
Subject : Computer Graphics

Subject_code : CS-2011

Course : B.Tech.(IV Sem.)

By
Poonam Saini

Department of Computer Science & Engineering
Sir Padampat Singhania University

Udaipur

1

Output Primitives

2
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

3

Topics covered in this presentation:
• Line Drawing
• Horizontal Line
• Vertical Line
• Scan converting a point and Line
• DDA algorithm for Line
• Bresenham’s Line drawing algorithm
• Bresenham’s Circle generation algorithm
• Mid Point Circle generation algorithm
• Mid Point Ellipse generation algorithm

4

The lines of this object
appear continuous

However, they are
made of pixels

Points and Lines

•Point plotting is accomplished by converting a
single coordinate position furnished by an
application program into appropriate operations
for the output device in use.

•With a CRT monitor, for example, the electron
beam is turned on to illuminate the screen
phosphor at the selected location.

5

Points

• Single Coordinate Position

– Set the bit value(color code) corresponding to a
specified screen position within the frame buffer

x

y setPixel (x, y)

6

• Line drawing is accomplished by
calculating intermediate positions along
the line path between specified end
points.

• An output device is then directed to fill in
these positions between the endpoints.

• Precise definition of line drawing
Given two points P and Q in the plane, both with integer
coordinates, determine which pixels on a raster screen
should be on in order to make a picture of a unit-width line
segment starting from P and ending at Q.

7

Lines

Scan Converting 2D Line Segments

Given:
• Segment endpoints (integers x1, y1; x2, y2)

Identify:
• Set of pixels (x, y) to display for segment

(x1, y1)

(x2, y2)

8

Line Rasterization Requirements

• Transform continuous primitive into
discrete samples

• Uniform thickness & brightness
• Continuous appearance
• No gaps
• Accuracy
• Speed

(x1, y1)

(x2, y2)

9

Line Drawing
Horizontal Line

• The horizontal line is obtained by keeping the
value of y constant and repeatedly incrementing
the x value by one unit.

• The following pseudo-code draw a horizontal
line from

(xstart,y) to (xend,y), xstart <= xend

for (x=xstart; x<= xend ; x++) do

putpixel(x,y,8);

If xstart>xend, in the for loop you must start from
reverse order (high to low)

10

Line Drawing

The vertical line
• It is obtained by keeping the value of x constant

and repeatedly incrementing the y value by one
unit.

• The following code draw a vertical line from
(x,ystart) to (x,yend), ystart <= yend.

for (y=ystart ; y<=yend ;y++) do
putpixel(x,y,8);

If ystart>yend, the for loop must be replaced by in
reserve counter (high to low).

11

0 1 2 3 4 5 6

6
5
4
3
2
1

0

(3, 3)

12

Scan Converting A Line

• The Cartesian slope- intercept equation

for a straight line is:

13

Scan Converting A Line

• These equation form the basic for

determining deflection voltage in

analog devices.

|m|<1 |m|>1 14

Line Drawing (cont)

• Also for any given x interval ∆x along a line, we can
compute the corresponding y interval ∆y from

∆y= m. ∆x

• Similarly we can obtain the x interval ∆x
corresponding to a specified ∆y as

∆x= ∆y / m

• These equations form the basis for determining
deflection voltages in analog devices.

15

Line Drawing (cont)

• For lines with slope magnitudes |m| < 1, ∆x can
be set proportional to a small horizontal
deflection voltage and the corresponding
vertical deflection is then set proportional to ∆y
as calculated from Eq. ∆y= m. ∆x.

• For lines whose slopes have magnitudes |m|>
1, ∆y can be set proportional to a small vertical
deflection voltage with the corresponding
horizontal deflection voltage set proportional to
∆x, calculated from Eq. ∆x= ∆y / m.

• For lines with m = 1, ∆ x = ∆ y and the
horizontal and vertical deflections voltages are
equal. 16

Scan Converting A Line
• On raster system, lines are plotted

with pixels, and step size (horizontal

& vertical direction) are constrained

by pixel separation.

17

Scan Converting A Line

• We must sample a line at

discrete positions and determine

the nearest pixel to the line at

each sampled position.

18

A Very Simple Solution

• We could simply work out the corresponding y
coordinate for each unit x coordinate

• Let’s consider the following example:

x

y

(2, 2)

(7, 5)

2 7

2

5

19

A Very Simple Solution (cont…)

1

2

3

4

5

0

1 2 3 4 5 60 7 20

A Very Simple Solution (cont…)

x

y

(2, 2)

(7, 5)

2 3 4 5 6 7

2

5
• First work out m and b:

 Now for each x value work out the y value:

5

3

27

25





m

5

4
2

5

3
2 b

5

3
2

5

4
3

5

3
)3(y

5

1
3

5

4
4

5

3
)4(y

5

4
3

5

4
5

5

3
)5(y

5

2
4

5

4
6

5

3
)6(y

21

A Very Simple Solution (cont…)

3
5

3
2)3(y

3
5

1
3)4(y

4
5

4
3)5(y

4
5

2
4)6(y

• Now just round off the results and turn on these
pixels to draw our line

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

22

A Very Simple Solution (cont…)

• However, this approach is just way too slow

• In particular look out for:

– The equation y = mx + b requires the
multiplication of m by x

– Rounding off the resulting y coordinates

• We need a faster solution

23

A Quick Note About Slopes

• In the previous example we chose to solve the
parametric line equation to give us the y coordinate
for each unit x coordinate

• What if we had done it the other way around?

• So this gives us:

• where: and

m

by
x




0

0

xx

yy
m

end

end




 00 xmyb 

24

A Quick Note About Slopes (cont…)

• Leaving out the details this gives us:

• We can see easily that
this line doesn’t look
very good!

• We choose which way
to work out the line
pixels based on the
slope of the line

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

4
3

2
3)3(x 5

3

1
5)4(x

25

A Quick Note About Slopes (cont…)

• If the slope of a line is between -1 and 1 then we work out
the y coordinates for a line based on it’s unit x coordinates

• Otherwise we do the opposite – x coordinates are computed
based on unit y coordinates

m = 0

m = -1/3

m = -1/2

m = -1

m = -2
m = -4

m = ∞

m = 1/3

m = 1/2

m = 1

m = 2
m = 4

m = 0 26

Digital Differential
Analyzer

(DDA Algorithm)

27

• Algorithm is an incremental scan conversion method.

• Based on calculating either ∆y or ∆x
If |m|<1,

Digital Differential Analyzer Algorithm(DDA)

28

DDA Algorithm

If |m|>1,

If

For the above cases it is
assumed that lines are to be
processed from the left
endpoint to the right endpoint.

If the process is reverse,

If

29

DDA Pseudo-code
Algorithm: DDA(float x1, float x2, float y1, float y2)

var dx, dy, steps, k: Integer

var xinc, yinc: real

Begin

Dx=x2-x1

Dy=y2-y1

If(abs(dx)>=abs(dy))

Then steps=abs(dx)

Else steps=abs(dy)

xinc = abs(dx/steps)

yinc = abs(dy/steps)

x = x1;

y = y1;

setpixel(Round(x),Round(y),1);

for k:=1 to steps

do

x :=x+ xinc;

y :=y+ yinc;

setpixel(Round(x),Round(y),1)

end

end

Q: For each step, how many

floating point operations are

there?

A: 4

Q: For each step, how many

integer operations are there?

A: 2

30

DDA Example

• Suppose we want to draw a
line starting at pixel (2,3) and
ending at pixel (12,8).

• What are the values of the
variables x and y at each
timestep?

• What are the pixels colored,
according to the DDA
algorithm?

steps = 12 – 2 = 10

xinc = 10/10 = 1.0

yinc = 5/10 = 0.5

k x y R(x) R(y)

0 2 3 2 3

1 3 3.5 3 4

2 4 4 4 4

3 5 4.5 5 5

4 6 5 6 5

5 7 5.5 7 6

6 8 6 8 6

7 9 6.5 9 7

8 10 7 10 7

9 11 7.5 11 8

10 12 8 12 8 31

DDA ALGORITHM

• Major disadvantages in the this approach :
– The rounding operations and floating-point arithmetic in DDA

algo. are still time-consuming.
– We can improve the performance of the DDA algorithm by

separating the increments m and l /m into integer and fractional
parts so that all calculation are reduced to integer operations.

 Major advantages in the above approach :

 Faster method for calculating pixel positions than the direct use
of Eq. y=mx+c

 It eliminates the multiplication by making use of raster
characteristics, so that appropriate increments are applied in the
x or y direction to step to pixel positions along the line path.

32

2D Cartesian Reference System

Coordinate origin at the
lower-left screen corner

y

x

y

x

Coordinate origin in the
upper-left screen corner

2D Cartesian Reference Frames

33

• Intermediate Positions between Two
Endpoints

– DDA, Bresenham’s line algorithms

Lines

• Intermediate Positions between Two
Endpoints

– DDA, Bresenham’s line algorithms

Jaggies
= Aliasing

34

Bresenham’s Line

Drawing Algorithm

35

Bresenham’s Line Algorithm

• An accurate, efficient raster line drawing algorithm
developed by Bresenham, scan converts lines using only
incremental integer calculations that can be adapted to
display circles and other curves.

• Keeping in mind the symmetry property of lines, lets
derive a more efficient way of drawing a line.

 Starting from the left end point (x0,y0) of a given line , we
step to each successive column (x position) and plot the
pixel whose scan-line y value closest to the line path

 Assuming we have determined that the pixel at (xk,yk) is
to be displayed, we next need to decide which pixel to
plot in column xk+1.

36

Bresenham’s Line Algorithm

37

Bresenham’s Line Algorithm

38

y

yk

yk+1

xk+1

}

}
d2

d1

Bresenham’s Line Algorithm

y

yk

yk+1

xk+1

}

}
d2

d1

y

yk

yk+1

xk+1

}

}
d2

d1

39

• The difference between these 2 separations is

• A decision parameter pk for the kth step in the line
algorithm can be obtained by rearranging above
equation so that it involves only integer calculations

Choices are (xk +1, yk) and (xk+1, yK+1)
d1 = y – yk = m(xk + 1) + b – yk

d2 = (yk + 1) – y = yk + 1- m(xk + 1) – b

d1-d2 = 2m(xk + 1) – 2 yk + 2b – 1

Bresenham’s Line Algorithm

40

• Define

pk = Δx (d1-d2) = 2Δyxk-2 Δxyk + c

• The sign of pk is the same as the sign of d1-d2, since Δx > 0.

Parameter c is a constant and has the value 2Δy + Δx(2b-1)

(independent of pixel position)

• If pixel at yk is closer to line-path than pixel at yk +1

(i.e, if d1 < d2) then pk is negative. We plot lower pixel in such a
case. Otherwise , upper pixel will be plotted.

Bresenham’s Line Algorithm

41

Coordinate changes along the line occur in unit steps in either the x
or y directions. Therefore, we can obtain the values of successive
decision parameters using incremental integer calculations.

• At step k + 1, the decision parameter can be evaluated as,
pk+1 = 2Δy.xk+1 - 2Δx.yk+1 + c

• Taking the difference of pk+ 1 and pk we get the following.
pk+1 – pk = 2Δy.(xk+1- xk)-2Δx.(yk+1 – yk)

• But, xk+1 = xk +1, so that
pk+1 = pk + 2Δy - 2 Δx(yk+1 – yk)

• Where the term yk+1-yk is either 0 or 1, depending on the sign of
parameter pk

Bresenham’s Line Algorithm

42

• The first parameter p0 is directly computed

p0 = 2 Δyx0 - 2 Δxy0 + c = 2 Δyx0 – 2 Δxy0 +2 Δy + Δx (2b-1)

• Since (x0,y0) satisfies the line equation , we also have

y0 = Δy/ Δx * x0 + b

• Combining the above 2 equations , we will have

p0 = 2Δy – Δx

The constants 2Δy and 2Δy-2Δx are calculated once for each time
to be scan converted

Bresenham’s Line Algorithm

43

• So, the arithmetic involves only integer addition and subtraction of
2 constants

1. Input the two end points and store the left end point
in (x0,y0)

2. Load (x0,y0) into the frame buffer (plot the first
point)

3. Calculate the constants Δx, Δy, 2Δy and 2Δy-2Δx
and obtain the starting value for the decision parameter
as

p0 = 2Δy- Δx

Bresenham’s Line Algorithm

44

4. At each xk along the line, starting at k=0, perform the
following test:

If pk < 0 , the next point is (xk+1, yk) and

pk+1 = pk + 2Δy

5. Repeat step 4 (above step) Δx times

Otherwise
Point to plot is (xk+1, yk+1)

pk+1 = pk + 2Δy - 2Δx

Bresenham’s Line Algorithm

45

46

• Suppose we want to
draw a line starting at
pixel (2,3) and ending at
pixel (12,8).

• What are the values of
p0, dx and dy?

• What are the values of
the variable p at each
timestep?

• What are the pixels
colored, according to
Bresenham’s algorithm?

dx = 12 – 2 = 10
dy = 8 – 3 = 5
p0 = 2dy – dx = 15

t p P(x) P(y)

0 0 2 3

1 -10 3 4

2 0 4 4

3 -10 5 5

4 0 6 5

5 -10 7 6

6 0 8 6

7 -10 9 7

8 0 10 7

9 -10 11 8

10 0 12 8

2dy = 10
2dy – 2dx = -10

Bresenham’s Line Algorithm

47

How do we draw a circle?

Properties of a circle:

• A circle is defined as a set of points that are all the given
distance (xc,yc). This distance relationship is expressed by
the pythagorean theorem in Cartesian coordinates as

(x – xc)
2 + (y – yc)

2 = r2

• We could use this equation to calculate the points on the
circle circumference by stepping along x-axis in unit steps
from xc-r to xc+r and calculate the corresponding y values
at each position as

y = yc +(-) (r2 – (xc –x)2)1/2

• This is not the best method:

– Considerable amount of computation

– Spacing between plotted pixels is not uniform

48

Polar co-ordinates for a circle

• We could use polar coordinates r and θ,

x = xc + r cosθ y = yc + r sinθ

• A fixed angular step size can be used to plot equally
spaced points along the circumference

• A step size of 1/r can be used to set pixel positions to
approximately 1 unit apart for a continuous boundary

• But, note that circle sections in adjacent octants within
one quadrant are symmetric with respect to the 45 deg
line dividing the two octants

• Thus we can generate all pixel positions around a circle
by calculating just the points within the sector from
x=0 to x=y

• This method is still computationally expensive 49

50

51

We need to compute only one 45-degree segment to determine the
circle
completely. For a circle centered at the origin (0,0), the eight
symmetrical points can
be displayed with procedure circlepoints().
Void circlepoints (int x, int y)
{
setpixel (x, y);
setpixel (y, x);
setpixel (y, -x);
setpixel (x, -y);
setpixel (-x, -y);
setpixel (-y, -x);
setpixel (-y, x);
setpixel (-x, y);
}

52

Suppose the point (xcenter, ycenter) is the center of the circle. Then the above
function can be modified as:

Void circlepoints(xcenter, ycenter, x, y)
intxcenter, ycenter, x, y;
{
setpixel (xcenter + x, ycenter + y);
setpixel (xcenter + y, ycenter + x);
setpixel (xcenter + y, ycenter - x);
setpixel (xcenter + x, ycenter - y);
setpixel (xcenter - x, ycenter - y);
setpixel (xcenter - y, ycenter - x);
setpixel (xcenter -y, ycenter + x);
setpixel (xcenter - x, ycenter + y);
}

53

Bresenham’s ALGORITHM for circle
1. Set the initial values of the variable:
(h,k) coordinates of the center of the circle, x=0, y=r and
d=3-2r
2. Test to determine whether the entire circle has been scan
converted or not. If x>y stop.
3. Plot the eight points by symmetry w.r.t. the centre (h,k) at
the current (x,y) coordinates.
Plot(x+h,y+k), Plot(y+h,x+k), Plot(-y+h,x+k), Plot(-x+h,y+k) ,
Plot(-x+h,-y+k), Plot(-y+h,-x+k), Plot(y+h,-x+k), Plot(x+h,-y+k)
4. Compute the location of the next pixel.
If d<0 then d=d+4x+6 and x=x+1
Else
d=d+4(x-y)+10 and x=x+1, y=y-1
5. GOTO step 2

Bresenham to Midpoint

• Bresenham's line algorithm for raster displays is adapted to circle
generation by setting up decision parameters for finding the closest
pixel to the circumference at each sampling step.

• Bresenham's circle algorithm avoids square-root calculations by
comparing the squares of the pixel separation distances.

54

Midpoint Circle Algorithm

• We will first calculate pixel positions for a circle centered
around the origin (0,0). Then, each calculated position (x,y) is
moved to its proper screen position by adding xc to x and yc to y

• Note that along the circle section from x=0 to x=y in the first
octant, the slope of the curve varies from 0 to -1

• Therefore, we can take unit steps in the positive x direction over
this octant and use a decision parameter to determine which of
the two possible y positions is closer to the circle path at each
step. Positions in the other seven octants are then obtained by
symmetry.

• Circle function around the origin is given by
fcircle(x,y) = x2 + y2 – r2

• Any point (x,y) on the boundary of the circle satisfies the
equation fcircle(x,y) =0

55

56

Midpoint Circle Algorithm

• For a point in the interior of the circle, the circle function is negative
and for a point outside the circle, the function is positive

• Thus,

– fcircle(x,y) < 0 if (x,y) is inside the circle boundary

– fcircle(x,y) = 0 if (x,y) is on the circle boundary

– fcircle(x,y) > 0 if (x,y) is outside the circle boundary

yk

yk-1

xk xk+1 xk+3Midpoint

x2+y2-r2=0

Midpoint between candidate
pixels at sampling position xk+1
along a circular path

57

Midpoint Circle Algorithm

• Assuming we have just plotted the pixel at (xk,yk) , we next need to
determine whether the pixel at position (xk + 1, yk-1) is closer to the
circle

• Our decision parameter is the circle function evaluated at the
midpoint between these two pixels

pk = fcircle (xk +1, yk-1/2) = (xk +1)2 + (yk -1/2)2 – r2

If pk < 0 , this midpoint is inside the circle and the pixel on the scan
line yk is closer to the circle boundary. Otherwise, the

mid position is outside or on the circle boundary, and we select the
pixel on the scan line yk-1

58

Midpoint Circle Algorithm

• Successive decision parameters are obtained using incremental
calculations

pk+1 = fcircle(xk+1+1, yk+1-1/2)

= [(xk+1)+1]2 + (yk+1 -1/2)2 –r2

OR

pk+1 = pk+2(xK+1) + (yK+1
2 – yk

2) – (yk+1- yk)+1

Where yk+1 is either yk or yk-1, depending on the sign of pk

• Increments for obtaining pk+1:

2xk+1+1 if pk is negative

2xk+1+1-2yk+1 otherwise

59

60

Case1:

Case2:

𝐼𝑓 𝑝𝑘 > 0, then 𝑦𝑘+1 = 𝑦𝑘 − 1

 𝑝𝑘+1 = 𝑝𝑘 + 2(𝑥𝑘 + 1) + 1(𝑦𝑘−1
2 − 𝑦𝑘

2) − (𝑦𝑘−1 − 𝑦𝑘)

𝑡ℎ𝑒𝑛, 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘 + 3 + 𝑦𝑘
2 + 1 − 2𝑦𝑘 − 𝑦𝑘

2 + 1

Then,𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘 − 2𝑦𝑘 + 5

𝑝𝑘+1 = 𝑝𝑘 + 2(𝑥𝑘 − 𝑦𝑘) + 5

𝐼𝑓 𝑝𝑘 < 0, then, 𝑌𝑘+1 = 𝑌𝑘

𝑝𝑘+1 = 𝑝𝑘 + 2(𝑥𝑘+1) + 1 = 𝑝𝑘 + 2𝑥𝑘 + 3

𝒕𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒑𝒌+𝟏 = 𝒑𝒌 + 𝟐 𝒙𝒌 − 𝒚𝒌 + 𝟓, 𝐟𝐨𝐫 𝒑𝒌 > 𝟎
and,𝒑𝒌 + 𝟐𝒙𝒌 + 𝟑 for 𝒑𝒌< 𝟎

Midpoint circle algorithm

• Initial decision parameter is obtained by evaluating the circle
function at the start position (x0,y0) = (0,r)

p0 = fcircle(1, r-1/2) = 1+ (r-1/2)2-r2

OR

P0 = 5/4 -r

• If radius r is specified as an integer, we can round p0 to

p0 = 1-r

61

The Mid point Circle algorithm

1: Input radius r and circle center (xc,yc) and obtain the first point on the
circumference of the circle centered on the origin as: (x0,y0) = (0,r)

2: Calculate the initial value of the decision parameter as

P0 = 5/4 – r but for integer radius P0=1-r;

3: At each xk position starting at k = 0 , perform the following test:

If pk < 0 , the next point along the circle centered on (0,0) is (xk+1, yk)
and pk+1 = pk + 2xk + 3

62

The algorithm

63

64

Example
r = 10

p0 = 1 – r = -9 (if r is integer round p0 = 5/4 – r to integer)

Initial point (x0, y0) = (0, 10)

65

Ellipse-Generating Algorithms

 Ellipse – A modified circle whose radius varies from a
maximum value in one direction (major axis) to a minimum
value in the perpendicular direction (minor axis).

P=(x,y)F1

F2

d1

d2

The sum of the two distances d1 and d2, between the fixed
positions F1 and F2 (called the foci of the ellipse) to any point

P on the ellipse, is the same value, i.e.

d1 + d2 = constant

66

Ellipse Properties

 Expressing distances d1 and d2 in terms of the focal
coordinates F1 = (x1, x2) and F2 = (x2, y2), we have:

 Cartesian coordinates:

 Polar coordinates:

2 2 2 2

1 1 2 2() () () () constantx x y y x x y y       

ry

rx

22

1c c

x y

x x y y

r r

   
     

   

cos

sin

c x

c y

x x r

y y r





 

 

67

68

69

70

71

72

73

74

75

76

Midpoint Ellipse Algorithm
1. Input rx, ry, and ellipse center (xc, yc), and obtain the first

point on an ellipse centered on the origin as

(x0, y0) = (0, ry)

2. Calculate the initial parameter in region 1 as

3. At each xi position, starting at i = 0, if p1i < 0, the next
point along the ellipse centered on (0, 0) is (xi + 1, yi) and

otherwise, the next point is (xi + 1, yi – 1) and

and continue until

2 2 21
0 4

1 y x y xp r r r r  

2 2

1 11 1 2i i y i yp p r x r   

2 2 2

1 1 11 1 2 2i i y i x i yp p r x r y r     

2 22 2y xr x r y

77

Midpoint Ellipse Algorithm
4. (x0, y0) is the last position calculated in region 1. Calculate the

initial parameter in region 2 as

5. At each yi position, starting at i = 0, if p2i > 0, the next point
along the ellipse centered on (0, 0) is (xi, yi – 1) and

otherwise, the next point is (xi + 1, yi – 1) and

Use the same incremental calculations as in region 1.
Continue until y = 0.

6. For both regions determine symmetry points in the other
three quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical
path centered on (xc, yc) and plot the coordinate values

x = x + xc , y = y + yc

2 2 2 2 2 21
0 0 02

2 () (1)y x x yp r x r y r r    

2 2

1 12 2 2i i x i xp p r y r   

2 2 2

1 1 12 2 2 2i i y i x i xp p r x r y r     

78

Example
rx = 8 , ry = 6

2ry
2x = 0(with increment 2ry

2 = 72)

2rx
2y = 2rx

2ry (with increment -2rx
2 = -128)

Region 1

(x0, y0) = (0, 6)

2 2 21
0 4

1 332y x y xp r r r r    

Move out of region 1 since

2ry
2x > 2rx

2y

79

Example
Region 2

(x0, y0) = (7, 3) (Last position in region 1)

1
0 2

2 (7 ,2) 151ellipsep f   

Stop at y = 0

80

References:

1.Computer Graphics C version by Donald Hearn

and M.P. Baker

2.http://www.geeksforgeeks.org/dda-line-

generation-algorithm-computer-graphics/

3.https://users.soe.ucsc.edu/~pang/160/f12/slides

/dda2.pdf

http://www.geeksforgeeks.org/dda-line-generation-algorithm-computer-graphics/
https://users.soe.ucsc.edu/~pang/160/f12/slides/dda2.pdf

