Subject . Computer Graphics

Subject code : CS-2011
Course . B. Tech.(IV Sem.)

By
Poonam Saini
Department of Computer Science & Engineering
Sir Padampat Singhania University
Udaipur

Output Primitives

2
@ @ This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

Topics covered in this presentation:

* Line Drawing

* Horizontal Line

* Vertical Line

* Scan converting a point and Line

* DDA algorithm for Line

* Bresenham's Line drawing algorithm

* Bresenham'’s Circle generation algorithm
* Mid Point Circle generation algorithm

* Mid Point Ellipse generation algorithm

The lines of this object
appear continuous

However, they are
made of pixels

Points and Lines

‘Point plotting is accomplished by converting a
single coordinate position furnished by an
application program into appropriate operations
for the output device in use.

*With a CRT monitor, for example, the electron
beam is turned on to illuminate the screen
phosphor at the selected location.

* Single Coordinate Position

— Set the bit value(color code) corresponding to a
specified screen position within the frame buffer

yt----1

Lines

* Line drawing is accomplished by
calculating intermediate positions along
the line path between specified end
points.

* An output device is then directed to fill in
these positions between the endpoints.

* Precise definition of line drawing

Given two points P and Q in the plane, both with integer
coordinates, determine which pixels on a raster screen
should be on in order to make a picture of a unit-width line
segment starting from P and ending at Q.

Scan Converting 2D Line Segments

Given:

, V1, x2, y2)

« Segment endpoints (integers x1

Identify:

* Set of pixels (x, y) to display for segment

+ |+ |+]|+ +|+]+]+|+]+]+]|+]+
+ |+ |+]|+ + |+ ++|+]+]+]|+]+
+omN |+ F]+
~_ |
N e[#]+l e+ +]+]+
+ |+ |+]+ + |+ +]+|+]+]+]|+]+
Lo
+(+ + |+ |+]+ +]|+ +]|+]+
N
+%.‘+ + + |+ |+]+ +]|+ +]|+
+ |+ |+ |+ + |+ |+]+ +|+]|+]|+
+ |+ |+]|+ |+ + |+ |+ +|+]|+]|+
+ |+ |+ |+ |+ + |+ |+]+ +]|+]|+
+ |+ |+]+ +]|+ + |+ |+ +|+]|+
+ |+ |+]|+ +]|+]|+ + |+ |+ |+ +
+ |+ |+]|+ +|+]+ + |+ |+]|+ +
+ |+ |+ |+ |+ +]+]|+ + T +
\ | |
+ |+ |+ |+ +|+]|+]|+]|+ N+ |+
>N\
+ |+ |+]+ +|+]+]+]|+ + |+ |+
sl s+ +++]+]+]5]+
N
+ |+ |+ |+ +|+]+]|+]|+]+ .rv +
+ |+ |+ |+ + |+ +]+|+]+]+]|+]+

Line Rasterization Requirements

into

primitive

continuous

e Transform

discrete samples
* Uniform thickness & brightness

* Continuous appearance
* No gaps

* Accuracy

* Speed

PR [T T NP RN (N (NI (U (T RNFT (RFU (R
FI [T (NP RN (N (U (NFU (T RNFR (R R
N et e

~ |
+ N
+ht |+ |+ |+ + |+ +]+]]| +]+
L
PR [T T (U TR RO QR NI (U IR RRFR T
L
+QON + |+ 4|+]+ +]+]+]+
N
+%‘+ + |+ |+ |+ +]+]+]+
+|+]+]+ + |+ |+ e+ +]+]+
+ |+ |+]+ + |+ |+ +]+]+]+
+ |+ +]+]+ +|+ |+ |+ +]+]+
|+ |+] 4]+ + |+ |+] 4]+
PR N T (N N I |+ |+]+
e+ e +]+]+ + |+ |+ +]+
+ |+ |+]|+ +|+]+]+ + | €T |+
\ L
|+ |+ |+ +]+]+]+]+ oL+ |+
>N
|+ |+ |+ +]+]+]+]+ ||+
P D T M O I I D D I, P
N N S S e A O
P [T T N I D U (U DT DA R T

Horizontal Line

* The horizontal line is obtained by keeping the
value of y constant and repeatedly incrementing

The fo]

line from

the x value by one unit.

lowing pseudo-code draw a horizontal

(xstart,y) to (xend,y), xstart <= xend

for (x=xstart; x<= xend ; x++) do

putpixel(x,y,8);

If xstart>xend, in the for loop you must start from
reverse order (high to low)

Line Drawing

The vertical line

» It is obtained by keeping the value of x constant
and repeatedly incrementing the y value by one
unit.

* The following code draw a vertical line from
(x,ystart) to (x,yend), ystart <= yend.

for (y=ystart ; y<=yend ;y++) do
putpixel(x,y,8);

If ystart>yend, the for loop must be replaced by in
reserve counter (high to low).

S = NWERUGID

_(3,3)

ol

Yie+3

Yici2

012345 6

Yic+r1

- ®

X Xpo1 Xrgo Xpaa

Figure 3-10

A section of the screen showing a pixel
in column x% on scan line y that is to be plotted along the
path of a line segment with slope 0 < m <1.

12

Scan Converting A Line

* The Cartesian slope- intercept equation

for a straight line Is: 3

‘yzm-x+b‘

&, 5}

Scan Converting A Line

* These equation form the basic for
determining deflection voltage In
analog devices.

Ay = mAx Ay

Im|<1 Im|>1

Line Drawing (cont)

« Also for any given x interval Ax along a line, we can
compute the corresponding y interval Ay from

Ay=m. Ax

 Similarly we can obtain the x interval Ax
corresponding to a specified Ay as

Ax= Ay / m
* These equations form the basis for determining
deflection voltages in analog devices.

Line Drawing (cont)

* For lines with slope magnitudes |m| <1, Ax can
be set proportional to a small horizontal
deflection voltage and the corresponding
vertical deflection is then set proportional to Ay
as calculated from Eq. Ay= m. Ax.

* For lines whose slopes have magnitudes |m|>

1, Ay can be set proportional to a small vertical
deflection voltage with the corresponding
horizontal deflection voltage set proportional to

Ax, calculated from Eq. Ax= Ay / m.

* For lines with m = 1, A x = A y and the
horizontal and vertical deflections voltages are
equal.

Scan Converting A Line

On raster system, lines are plotted
with pixels, and step size (horizontal
& vertical direction) are constrained

by pixel separation.

I:I' I:I [| =]| -
LN An "Ideal” line

/

ESRRYY
A discrete approximation

Scan Converting A Line
« We must sample a line at
discrete positions and determine
the nearest pixel to the line at
each sampled position.

A Very Simple Solution

 We could simply work out the corresponding y
coordinate for each unit x coordinate

* Let’s consider the following example:

(7, 5)

(2, 2)

A Very Simple Solution (cont...)

N N N N N N N)
-/ N / / </ (N (N /
' ' ' ' N N N N
N -/ -/ N -/ </ -/ /
N N N 2 N N N N
N N N N N N o/ N
N N)) N N N N
-/ </ N N W/ -/ N N
() () () () () () () ()
-/ o/ o/ N o/ o/ N N>
N N N N N\ N\ N\ N
-/ -/ -/ N -/ N N N

20

A Very Simple Solution (cont..

)

’ (7.5) + First work out m and b:
°o—2 3
m=_——°=-_=
—2 5
(2,2)
X 5

= Now for each x value work out the y value:
3 _ 4 _3 3 4 _1
3)=—-3+—=2— 4)=—-44+—=—=3—
y(@=g-3+g=20 Y=g c =3¢
3 4 4 3 4 2
_ — — = — 6:_'6_'__:4_
yG)=z-5+-=3; Y(O)=5-6r5=4-

)

(cont..
* Now just round off the results and turn on these

A Very Simple Solution

pixels to draw our line

BRI
slole! lelolelel
slole! leloleleT
slelele) loelen
Nolele! feleles
slelelels! lelel
slelelvleleloles
olelelelolslelet

~N O D < O N+ O

A Very Simple Solution (cont...)

* However, this approach is just way too slow
* In particular look out for:

— The equation y = mx + b requires the
multiplication of m by x

— Rounding off the resulting y coordinates
* We need a faster solution

A Quick Note About Slopes

In the previous example we chose to solve the
parametric line equation to give us the y coordinate
for each unit x coordinate

What if we had done it the other way around?
So this givesus: y _ Y~ b
m

where: m=2end “Yo ,nq b= Yo — M- X,
Xend — %o

e

A Quick Note About Slopes (cont...)

2
X(3)=3=-=4
(3) =37

* We can see easily that

this line doesn’t look
very good!

* We choose which way

to work out the line
pixels based on the
slope of the line

* Leaving out the details this gives us:

X(4) = 51 R

o1

¢‘
5
X

<
<
=
o
o
Qe

O
i
G
o<
% Y
8

..0
s
A

¢'

U0
{0
30

O P N W & O O N

®
<
f

OO
e
e

23
f
o
Ne

o
=
N
w
AN
o1
o

e

e

<
30

08

e

=

e

{0
e

{0
o't

\l
o)

A Quick Note About Slopes (cont...)

* If the slope of a line is between -1 and 1 then we work out
the y coordinates for a line based on it’s unit x coordinates

* Otherwise we do the opposite - x coordinates are computed
based on unit y coordinates

Digital Differential

Analyzer
(DDA Algorithm)

Digital Differential Analyzer Algorithm(DDA)

Algorithm is an incremental scan conversion method.

Based on calculating either Ay or Ax
If |lm|<1,

Ay = mAx

Vi =V, T

DDA Algorithm

Rotate and Rename coordinate axes

If | m | >11 (Ay = 1) Yi Slape
Oreafer

Ay 1 than 1
Ax = s Xgpg =X T—
m m dy
For the above cases it is

assumed that lines are to be
processed from the left
endpoint to the right endpoint. dx

X
. >
If the process is reverse,

If (Ax=-1) If (Ay=-1)
Ay = mAx Ay = mAx

_= —m _ o
Vi = Vi Xgo =X,

X
-
M
dx
Slope Less
than I

Yy

DDA Pseudo-code

Algorithm: DDA(float x1, float x2, float y1, float y2)
var dx, dy, steps, k: Integer

var xinc, yinc: real Q: For each step, how many
floating point operations are

Begin there?

Dx=x2-x1 A 4

Dy=y2-y1

If(abs(dx)>=abs(dy)) :
Then steps=abs(dx) Q: For each step, how many

. _ .
Else steps=abs(dy) integer operations are there”

xinc = abs(dx/steps) A2
yinc = abs(dy/steps)
X =Xx1;
y =Yyl
setpixel(Round(x),Round(y),1);
for k:=1 to steps
do
X =X+ Xinc;
y :=y+ yinc;
setpixel(Round(x),Round(y),1)
end
end

DDA Example

Suppose we want to draw a
line starting at pixel (2,3) and
ending at pixel (12,8).

What are the values of the
variables x and y at each
timestep?

What are the pixels colored,
according to the DDA
algorithm?

steps =12-2=10
xinc =10/10=1.0
yinc =5/10=0.5

P
~

X
_

P
N\
~<
v

O oI N|oaalu| P~ W[N] X
D
Ul

Ol NS~ W|N

—
o
N

—
o

V(I N[O OV DA W[N]]O| X

—
—
~N
Ul

—
—

—
o
—
N
oo

—
N

| V|IN|IN|IOoofofun|lUL|p~] D] W

DDA ALGORITHM

= Major advantages in the above approach :

» Faster method for calculating pixel positions than the direct use
of Eq. y=mx+c
» It eliminates the multiplication by making use of raster

characteristics, so that appropriate increments are applied in the
x or y direction to step to pixel positions along the line path.

* Major disadvantages in the this approach :

— The rounding operations and floating-point arithmetic in DDA
algo. are still time-consuming.

— We can im]ﬁrove the performance of the DDA algorithm by
separating the increments m and [/m into integer and fractional
parts so that all calculation are reduced to integer operations.

2D Cartesian Reference System

2D Cartesian Reference Frames

v

v

Coordinate origin at the
screen corner

Coordinate origin in the

screen corner
33

Lines

 Intermediate Positions between Two

Endpoints
— DDA, Bresenham’s line algorithms

° Jaggies
= Aliasing

34

Bresenham’s Line
Drawing Algorithm

Bresenham'’s Line Algorithm

* An accurate, efficient raster line drawing algorithm
developed by Bresenham, scan converts lines using only
incremental integer calculations that can be adapted to
display circles and other curves.

* Keeping in mind the symmetry property of lines, lets
derive a more efficient way of drawing a line.

o Starting from the left end point (x,,y,) of a given line , we
step to each successive column (x position) and plot the
pixel whose scan-line y value closest to the line path

o Assuming we have determined that the pixel at (x,,y,) is
to be displayed, we next need to decide which pixel to

plot in column x,;.)

Bresenham’s Line Algorithm

yk¢3

Yk+2 y-mx.’.b

yk+1

Yk

Xe Xikat Xks2 Xk

37

Bresenham’s Line Algorithm

Yk+3

Yis 2 y=\mx+b

yk+1

Yk

Xe Xikwt Xka2 Xko3

38

Bresenham'’s Line Algorithm

yk+1
] ‘

;9
Y

} o
Yi ¢

Xk+1

39

Bresenham'’s Line Algorithm

Choices are (x; +1, y,) and (x,+1, y+1)

dy =y -y =m+1)+b-y,
=Wy, +1)-y=y+1-m(x,+1)-b

» The difference between these 2 separations is
d1-d2 =2m(x, +1) -2y, +2b-1
* A decision parameter p, for the k" step in the line

algorithm can be obtained by rearranging above
equation so that it involves only integer calculations

40

Bresenham'’s Line Algorithm

* Define
p, =Ax (d-d,) = 2Ayx,-2 Axy, + ¢

* The sign of p, is the same as the sign of d;-d,, since Ax > 0.
Parameter c is a constant and has the value 2Ay + Ax(2b-1)
(independent of pixel position)

 If pixel at y, is closer to line-path than pixel at v, +1

(i.e, if d; < d,) then p, is negative. We plot lower pixel in such a
case. Otherwise , upper pixel will be plotted.

41

Bresenham'’s Line Algorithm

Coordinate cha%es along the line occur in unit steps in either the x
or y directions. Therefore, we can obtain the values of successive
decision parameters using incremental integer calculations.

» Atstep k + 1, the decision parameter can be evaluated as,
Pi+1 = 28Y. %141 - 24Xy + C

 Taking the difference of p,, ; and p, we get the following.
Pre1 = Pr = 24Y.(Xpeiq- X)-2A%.(Ygs1 = Y1)

* But, x,,; = x, +1, so that
Pi+1 = Pr + 24y - 2 Ax(Y g - Y1)

* Where the term y,,;-y, is either 0 or 1, depending on the sign of
parameter p,

42

Bresenham'’s Line Algorithm

The first parameter p, is directly computed
po=2Ayx,-2 Axy,+ c=2 Ayx, -2 Axy, +2 Ay + Ax (2b-1)

Since (x,1,) satisfies the line equation , we also have
Yo =Ay/Ax *x,+ b

Combining the above 2 equations , we will have

py= 24y - Ax
The constants 2Ay and 2Ay-2Ax are calculated once for each time
to be scan converted

43

Bresenham'’s Line Algorithm

So, the arithmetic involves only integer addition and subtraction of
2 constants

1. Input the two end points and store the left end point
in (XyYo)

2. Load (x,,y,) into the frame buffer (plot the first
point)

3. Calculate the constants Ax, Ay, 2Ay and 2Ay-2Ax
and obtain the starting value for the decision parameter

as

py = 2Ay- Ax

44

Bresenham'’s Line Algorithm

4. At each x; along the line, starting at k=0, perform the
following test:

If p, <0, the next point is (x,+1, y,) and
Pre1 = Pr T 24Y

Otherwise
Point to plot is (x;+1, y,+1)
Pre1 = Pr T 24y - 2Ax

5. Repeat step 4 (above step) Ax times

45

Example 3-1 Bresenham Line Drawing

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and (30,
18). This line has a slope of 0.8, with

Ax=10, Ay=8
The initial decision parameter has the value

p0=2Ay—Ax
=6

and the increments for calculating successive decision parameters are
24y = 16, 20y — 2Ax = —4

We plot the initial point (xg, yo) = (20, 10), and determine successive pixel posi-
tions along the line path from the decision parameter as

k Pk (Xg+1r Yiesr) k P (Xps1, Yis1)
o 0 6 (21, 11) 5 6 (26, 15)
e 1 2 (22, 12) b 2 (27, 16)
i R (23, 12) y ST (28, 16)
g 2 3 14 (24, 13) 8 14 (29, 17)
il 4 10 (25, 14) 9 10 (30, 18)

46

Bresenham'’s Line Algorithm

dx=12-2=10 2dy =10
dy=8-3=5 2dy - 2dx =-10
p0=2dy -dx=15

Suppose we want to

draw a line starting at : P Pe) | PO)
pixel (2,3) and ending at 0 0 2 3
pixel (12,8). 1 10 |3 4
What are the values of > 0 1 1
p0, dx and dy? ; TR -
What are the values of , - - -
the variable p at each
timestep? 5 100 |7 6
What are the pixels 6 0 8 6
colored, according to 7 10 9 7
J * ?
Bresenham’s algorithm? . 5 " =
9 10 |11 8
10 0 12 g

How do we draw a circle?

Properties of a circle:

* A circle is defined as a set of points that are all the given
distance (x,y_.). This distance relationship is expressed by
the pythagorean theorem in Cartesian coordinates as

(x-x)+y-y)2=r
* We could use this equation to calculate the points on the
circle circumference by stepping along x-axis in unit steps

from x_-r to x_+r and calculate the corresponding y values
at each position as

y=1vy,. +(-) (¥* - (xc -x)?)"?
* This is not the best method:
— Considerable amount of computation
— Spacing between plotted pixels is not uniform

Polar co-ordinates for a circle

We could use polar coordinates r and 0,

x =x,+rcosO y=y_.+rsin0
A fixed angular step size can be used to plot equally
spaced points along the circumference

A step size of 1/r can be used to set pixel positions to
approximately 1 unit apart for a continuous boundary

But, note that circle sections in adjacent octants within
one quadrant are symmetric with respect to the 45 deg
line dividing the two octants

Thus we can generate all pixel positions around a circle
by calculating just the points within the sector from
x=0 to x=y

This method is still computationally expensive

(—y, x) (y’ X)

(=%.7) G50 3G y)
(—x, —y) (x, =)
(_ya _.?C) (y: _.XT)

Figure 3-18

Symmetry of a circle. Calculation of a circle point (x, y)in one octant
yields the circle points shown for the other seven octants.

50

We need to compute only one 45-degree segment to determine the
circle

completely. For a circle centered at the origin (0,0), the eight
symmetrical points can

be displayed with procedure circlepoints().

Void circlepoints (int x, int y)

{

setpixel (x, y);

setpixel (y, x);

setpixel (y, -x);

setpixel (x, -y);

setpixel (-x, -y);

setpixel (-y, -x);

setpixel (-y, x);

setpixel (-x, y);

}

Suppose the point (xcenter, ycenter) is the center of the circle. Then the above
function can be modified as:

Void circlepoints(xcenter, ycenter, x, y)
intxcenter, ycenter, X, y;

{

setpixel (xcenter + x, ycenter + y);
setpixel (xcenter +y, ycenter + x);
setpixel (xcenter +y, ycenter - x);
setpixel (xcenter + x, ycenter - y);
setpixel (xcenter - x, ycenter - y);
setpixel (xcenter - y, ycenter - x);
setpixel (xcenter -y, ycenter + x);
setpixel (xcenter - x, ycenter + y);

}

Bresenham’s ALGORITHM for circle

1. Set the initial values of the variable:

(h,k) coordinates of the center of the circle, x=0, y=r and
d=3-2r

2. Test to determine whether the entire circle has been scan
converted or not. If x>y stop.

3. Plot the eight points by symmetry w.r.t. the centre (h,k) at
the current (x,y) coordinates.

Plot(x+h,y+k), Plot(y+h,x+k), Plot(-y+h,x+k), Plot(-x+h,y+k) ,
Plot(-x+h,-y+k), Plot(-y+h,-x+k), Plot(y+h,-x+k), Plot(x+h,-y+k)
4. Compute the location of the next pixel.

If d<0 then d=d+4x+6 and x=x+1

Else

d=d+4(x-y)+10 and x=x+1, y=y-1

5. GOTO step 2

Bresenham to Midpoint

* Bresenham's line algorithm for raster displays is adapted to circle
generation by setting up decision parameters for finding the closest
pixel to the circumference at each sampling step.

* Bresenham's circle algorithm avoids square-root calculations by
comparing the squares of the pixel separation distances.

Midpoint Circle Algorithm

We will first calculate FFixel positions for a circle centered
around the origin (0,0). Then, each calculated position (x,y) is
moved to its proper screen position by adding x_.to x and y_toy

Note that along the circle section from x=0 to x=y in the first
octant, the slope of the curve varies from 0 to -1

Therefore, we can take unit steps in the positive x direction over
this octant and use a decision parameter to determine which of
the two possible y positions is closer to the circle path at each
step. Positions in the other seven octants are then obtained by
symmetry.

Circle function around the origin is given by
furc(0y) =2+ y2 =1

circle

Any point (x,y) on the boundary of the circle satisfies the
equatlon fcircle(X'Y) =0

/x2+y2fr2:O

2N

Midpoint

X, xpt 1xk+2

Figure 3-19

Midpoint between candidate pixels at
sampling position xj + 1 along a circular path.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker.

ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NI. All rights reserved. o6

Midpoint Circle Algorithm

» For a point in the interior of the circle, the circle function is negative
and for a point outside the circle, the function is positive

* Thus,
— f.a0(Xy) <0if (x,y) is inside the circle boundary
— f.a0(xy) = 01if (x,y) is on the circle boundary
— f.a0(Xy) > 01if (x,y) is outside the circle boundary

— x2+y2-12=()
y
K . o o |
il] \ Midpoint between candidate
pd pixels at sampling position x;,+1

Midpoint X xt1 x+3 along a circular path

57

Midpoint Circle Algorithm

« Assuming we have just plotted the pixel at (x;,1,) , we next need to
determine whether the pixel at position (x;, + 1, y/,-1) is closer to the
circle

* Our decision parameter is the circle function evaluated at the
midpoint between these two pixels

Pi = frivae 1 1, v,-1/2) = (x, +1)% + (y,. -1/2)? - 12

If p, < 0, this midpoint is inside the circle and the pixel on the scan
line 1, is closer to the circle boundary. Otherwise, the

mid position is outside or on the circle boundary, and we select the
pixel on the scan line y,;-1

Midpoint Circle Algorithm

* Successive decision parameters are obtained using incremental
calculations

pk+1 = circle(xk+1+1/ yk+1'1/2)
= [(xk+1)+1]2 + (yk+1 -1/2)? -12

OR
Pre = Pit200ctD) + Yy = Yi?) = (it 1- y)+1
Where v/, ., is either y, or y,_;, depending on the sign of p,
* Increments for obtaining p, .
2x,..1+1 if p, is negative
2x;,,+1-2y, ., otherwise

59

Casel:

If p, <0, then, Yy =Y
Pi+1 = Pk + 2(Xg41) + 1 =py + 2%, + 3

Case2:

If pr > 0,then Y41 =Yx — 1

Prs1 =DPr + 20 + 1) + 1(k—)? = ¥2) — k1 — Vi)
then, py41 =pk+2xk+3+y£+1—2yk—y,§+1
Then,py+1 = pr + 2x — 2y, + 5

Pk+1 =Pk +2(xx —yx) +5

therefore,py.1 =i +2(x;, —y) + 5 for p;, >0
and,pk + Zxk + 3 for pk< 0

60

Midpoint circle algorithm

* Initial decision parameter is obtained by evaluating the circle
function at the start position (x,v,) = (0,r)

Do = furae(1, 7-1/2) = 1+ (r-1/2)%-1?
OR
P,=5/4-r
» Ifradiusr is specified as an integer, we can round p, to
po = 1-r

The Mid point Circle algorithm

1: Input radius r and circle center (x,y.) and obtain the first point on the
circumference of the circle centered on the origin as: (x,,y,) = (0,1)

2: Calculate the initial value of the decision parameter as
P, =5/4 - r but for integer radius P0=1-r;
3: At each x, position starting at k = 0, perform the following test:

If p, <0, the next point along the circle centered on (0,0) is (X\.11, Vi)
and py,q =Py +2x, + 3

62

The algorithm

Otherwise the next point along the circle is (xy.q, Yx4) and

Pxe1 = Pre1 = Pr T 2(Xx, —Yi) 15
Al’ldxk-l_l =X, +1, Vet =V +1

Determine the other 7 octant points,

Move each calculated pixel position (x,y) onto the circular path

centered on (x_.,y.) and plot the coordinate values

Six=xtx. , y=yty.

6: Repeat steps 3 through 5 until x>=y

63

r=10

Po=1—r=-9 (if r is integer round p, = 5/4 —r to integer)

Example

Initial point (x,, y,) = (0, 10)

[pi | Xt Yier | 2% | 2y
01 -9 (1,10) ; 210
1] -6 (2,10) - 20
2| -1 | (3,10) 6 20
316 4,9) 8 18
4 | -3 5,9 10 18
51 8 (6, 8) 12 16
6| 5 (7,7)

10
9
8

[

LN

10

64

Ellipse-Generating Algorithms

¢ Ellipse — A modified circle whose radius varies from a
maximum value in one direction (major axis) to a minimum
value in the perpendicular direction (minor axis).

A

The sum of the two distances d, and d,, between the fixed
positions F, and F, (called the fOCI of the ellipse) to any point
P on the ellipse, Is the same value, I.e.

d, + d, = constant

65

Ellipse Properties

* Expressing distances d, and d, in terms of the focal
coordinates F, = (x,, X,) and F, = (x,, y,), we have:

JX=X)2 + (Y = ¥,)? +(x=%,)% +(y - ¥,)? = constant

A

2 2
X — X _
¢ (Cartesian coordinates: (Cj J{y ycj =1

. X=X, +TI Ccosd
¢ Polar coordinates: _
y=Y,+r,sinog

66

Ellipse Algorithms

¢+ Symmetry between quadrants
+ Not symmetric between the two octants of a quadrant

¢ Thus, we must calculate pixel positions along the
elliptical arc through one quadrant and then we obtain

positions in the remaining 3 quadrants by symmetry

(-x,) (x, V)
o
('xa _y)\j(x, 'y)

67

Ellipse Algorithms

.22 2.2 2.2
f;zllzpse(x’y)_ryx ‘|‘ny _rx ry

¢ Decision parameter:

<0 if (x,y) is inside the ellipse
oo (X, ¥) = 1= 0 if (x,) is on the ellipse

>0 1t (x, y) 1s outside the ellipse

\ Slope = -1
K 1::2 2r;
v/ r-Xx
/ : Slope = __ =
k y dc 2r’y

68

\L

Ellipse Algorithms /N !
Pyl / 2
¢ Starting at (0, r,) we take unit steps in the x direction until
we reach the boundary between region 1 and region 2.

Then we take unit steps in the y direction over the
remainder of the curve in the first quadrant.

¢ At the boundary
P _
dx

¢ therefore, we move out of region 1 whenever

-1 = 2ry2x=2rx2y

2@x22ﬁy

69

Midpoint Ellipse Algorithm

i (@

yi-1

\

\

x; |x+1|x+2

Assuming that we have just plotted the pixels at (x;, y;).
The next position is determined by:

pli = .f;?ﬁzpse(xi +1’ yi _%
— ryz(xi +1)2 +rx2(yi _%)2 _rxzry2

If pl; <0 the midpoint 1s inside the ellipse = y; 1s closer
If pli > 0 the midpoint 1s outside the ellipse = y; — 1 1s closer

70

Decision Parameter (Region 1)

At the next position [x,,; + 1 =x; + 2]

1

P 1i+1 = feﬁzpse (xm T 1» Vi ™ 5)

2 2 2
=7, (x, +2)" +r (y

i+1 _%)2 _rxzr;
OR

p1i+1 = plz +2ry2(xi +1)2 +ry2 _|_Vx2 |:(yi+1 _%)2 _(yi _% 2:|
where y;., =y,

or Yy =yi—1

Decision Parameter (Region 1)

Decision parameters are incremented by:

. 21!3,2363.+1 + ry2 if pl. <0
increment =5 -,)) .
2r X, +r =2r Y, 1 pl 20

Use only addition and subtraction by obtaining
2r)x and 2rly

At mitial position (0, 7))
2ﬁx=0

2. . A2
2ry =12rr,

_ AN 2 L 2 1N2 2.2
pl()_f;zllipse(l’ry 2)_?')7 +rx (ry 2) Vx Vy
=r’—rir +Lir’
y Xy 4 " x

72

Region 2

Over region 2, step in the negative y direction and midpoint is
taken between horizontal pixels at each step.

@
yi-l \o

x; |x+1|x+2

Decision parameter:
pzi = fezzzpse(xi +%9yi _1)
— ry2(xi +%)2 +rx2(yi _1)2 —r

2
xry

If p2,> 0 the midpoint 1s outside the ellipse = x; 1s closer
If p2i < 0 the midpoint 1s inside the ellipse = x; + 1 1s closer

73

Decision Parameter (Region 2)

At the next position [y, — 1 =y, — 2]
P2, = feﬁzpse (x;,, + %»y w1~ D
= Vy2 (xi+l T %)2 + sz (yz o 2)2 o rx2ry2
OR

P2 = P2, =21 (y, =D +rl 417 [(x 0+ = (x,+1) |

where x| = x;

74

Decision Parameter (Region 2)

Decision parameters are incremented by:

(—2rx2 Vo, +r it p2. >0

Increment = < .
+r, 1f p2. <0

2 2
\2ry xi+1 o 2rx yi+1

At initial position (x,, y,) 1s taken at the last
position selected in region 1

p20 — ﬂllzpse(xo +%9y0 _1)

2 2 2 2 2.2
:I”y(x0+%) +rx (yO_l) _rxry

75

Midpoint Ellipse Algorithm

1. Inputr,, r, and ellipse center (x., v.), and obtain the first
point on an ellipse centered on the origin as

(XOI yo) = (OI ry)
2. Calculate the initial parameter in region 1 as

2 2 1 2
Py =1, —rr, +4r,

3. At each x; position, starting ati =0, if p1, <0, the next
point along the ellipse centered on (0, 0) is (x;+ 1, y;) and

pl., = pl +2r’x +r

y N+l

otherwise, the next pointis (x;+ 1, y,— 1) and

pll +1 pl + 2 +1 o 2r-x2 yi +1 T r-y2

2rx 2ry

76

and continue until

Midpoint Ellipse Algorithm
4. (Xo, Vo) is the last position calculated in region 1. Calculate the
initial parameter in region 2 as

2 2 | .2 2 2.2
p20 — ry (XO +%) + 1, (yo _1) — I ry
5. At each y, position, starting at i = 0, if p2, >0, the next point
along the ellipse centered on (0, 0) is (x;, y;— 1) and
2 2
P2, = P2 —2r Y, +,
otherwise, the next pointis (x;+ 1, y,— 1) and
2 2 2
p2i+1 — p2| + 2r.y Xi+1 o 2rx yi+1 + r.x
Use the same incremental calculations as in region 1.
Continue until y = 0.

6. For both regions determine symmetry points in the other
three quadrants.

7. Move each calculated pixel position (x, y) onto the elliptical
path centered on (x,, y.) and plot the coordinate values

X=X+X_, y=y+y, .

Example
=8, r,=6
2r,#x = 0(with increment 2r,* = 72)
21,2y = 2r,°r, (with increment -2r,> = -128)
Region 1
(Xo: Yo) = (0, 6)
pl, =1 —r’r, +31; =-332

| .2 .2
Pi | Xi+1> Yit1 2’3.- Xis1 | 21 Vin

AN L B W N = O~

332 | (1,6) 72 768
224 | (2,6) 144 768
44 | (3,6) 216 768

208 | (4,5) 288 640
108 | (5,5) 360 640
288 | (6,4) 432 512

244 | (7,3) 504 384

Move out of region 1 since
2 2
2I’y X> 2rx y 78

p2,=f

Example
Region 2

(Xo» Yo) = (7, 3)
(7+2,2)=-151

(Last position in region 1)

ellipse

[pi | X Yia | 20X | 207Yin

0 [-151 (8,2) 576 256

1 | 233 (8, 1) 576 128

2 | 745 (8,0) -

‘1900 ® ©®

5 O

4 o

3 o

2 o

! @

0 O
0 2 3 5 6 7 8

Stopaty=0

79

References:

1.Computer Graphics C version by Donald Hearn
and M.P. Baker

2.http://www.geeksforgeeks.org/dda-line-
generation-algorithm-computer-graphics/

3.https://users.soe.ucsc.edu/~pang/160/f12/slides
/dda2.pdf

80

http://www.geeksforgeeks.org/dda-line-generation-algorithm-computer-graphics/
https://users.soe.ucsc.edu/~pang/160/f12/slides/dda2.pdf

