Subject Subject_code Course

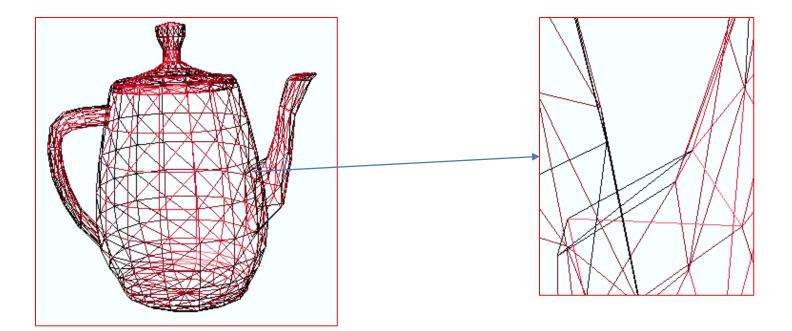
: Computer Graphics : CS-2011 : B.Tech.(IV Sem.)

By Poonam Saini Department of Computer Science & Engineering Sir Padampat Singhania University Udaipur

Output Primitives

2 This work is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License</u>. **Topics covered in this presentation:**

- Line Drawing
- Horizontal Line
- Vertical Line
- Scan converting a point and Line
- DDA algorithm for Line
- Bresenham's Line drawing algorithm
- Bresenham's Circle generation algorithm
- Mid Point Circle generation algorithm
- Mid Point Ellipse generation algorithm



The lines of this object appear **continuous**

However, they are *made of pixels*

Points and Lines

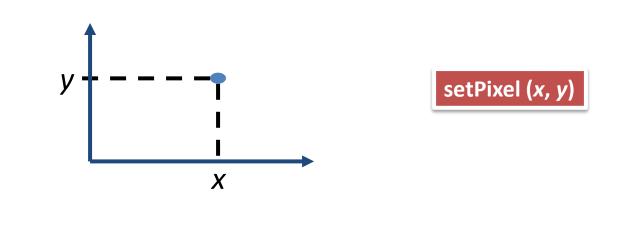
•Point plotting is accomplished by converting a single coordinate position furnished by an application program into appropriate operations for the output device in use.

•With a CRT monitor, for example, the electron beam is turned on to illuminate the screen phosphor at the selected location.

Points

Single Coordinate Position

 Set the bit value(color code) corresponding to a specified screen position within the frame buffer



Lines

- Line drawing is accomplished by calculating intermediate positions along the line path between specified end points.
- An output device is then directed to fill in these positions between the endpoints.
- Precise definition of line drawing

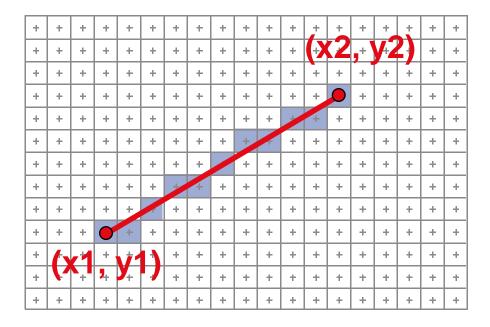
Given two points P and Q in the plane, both with integer coordinates, determine which pixels on a raster screen should be *on* in order to make a picture of a unit-width line segment starting from P and ending at Q.

Scan Converting 2D Line Segments

Given:

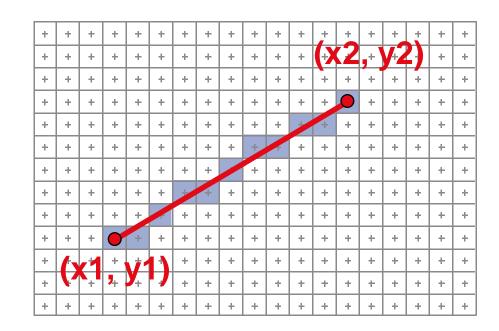
• Segment endpoints (integers x1, y1; x2, y2) Identify:

• Set of pixels (x, y) to display for segment



Line Rasterization Requirements

- Transform continuous primitive into discrete samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed



Line Drawing

Horizontal Line

- The horizontal line is obtained by keeping the value of y constant and repeatedly incrementing the x value by one unit.
- The following pseudo-code draw a horizontal line from

(xstart,y) to (xend,y), xstart <= xend

for (x=xstart; x<= xend ; x++) do</pre>

putpixel(x,y,8);

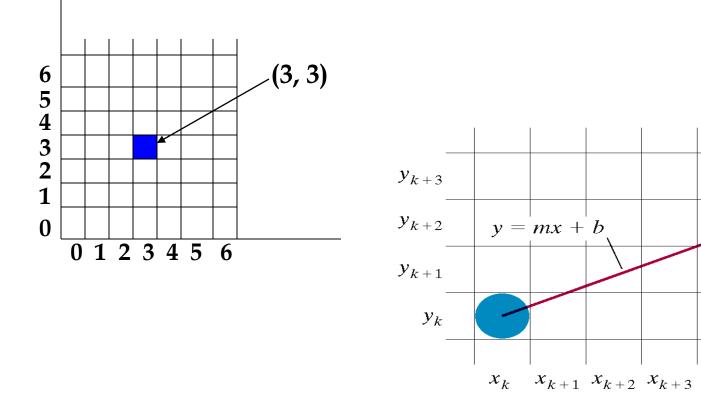
If xstart>xend, in the **for** loop you must start from reverse order (high to low)

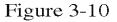
Line Drawing

The vertical line

- It is obtained by keeping the value of x constant and repeatedly incrementing the y value by one unit.
- The following code draw a vertical line from (x,ystart) to (x,yend), ystart <= yend.

If ystart>yend, the **for** loop must be replaced by in reserve counter (high to low).





A section of the screen showing a pixel in column x_k on scan line y_k that is to be plotted along the path of a line segment with slope 0 < m < 1.

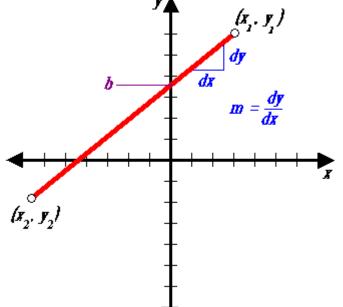
Scan Converting A Line

The Cartesian slope- intercept equation
 for a straight line is:

$$y = m \cdot x + b$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

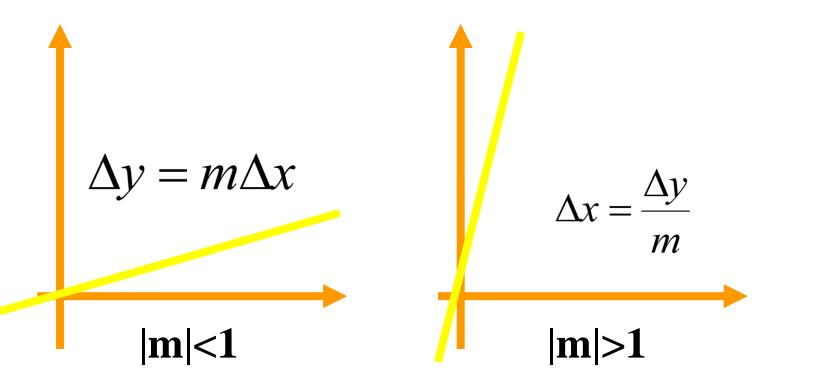
$$b = y_1 - m \cdot x_1$$



$$\Delta y = m\Delta x \qquad \Delta x = \frac{\Delta y}{m}$$

Scan Converting A Line

• These equation form the basic for determining deflection voltage in **analog devices**.



Line Drawing (cont)

• Also for any given x interval Δx along a line, we can compute the corresponding y interval Δy from

 $\Delta y = m. \Delta x$

• Similarly we can obtain the x interval Δx corresponding to a specified Δy as

 $\Delta x = \Delta y / m$

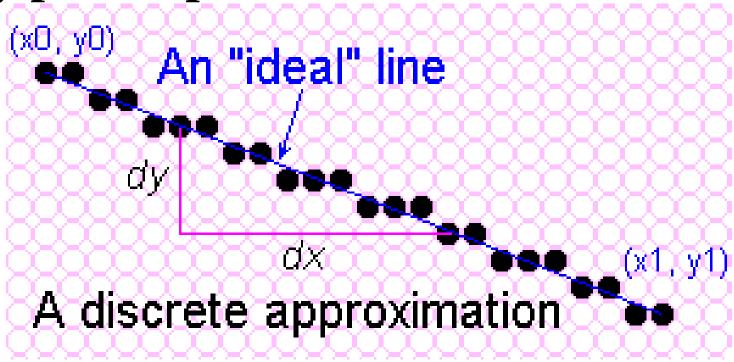
• These equations form the basis for determining deflection voltages in analog devices.

Line Drawing (cont)

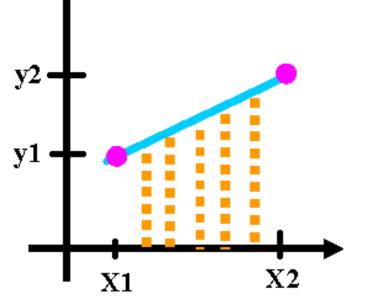
- For lines with slope magnitudes |m| < 1, Δx can be set proportional to a small horizontal deflection voltage and the corresponding vertical deflection is then set proportional to Δy as calculated from Eq. Δy = m. Δx .
- For lines whose slopes have magnitudes |m| > 1, Δy can be set proportional to a small vertical deflection voltage with the corresponding horizontal deflection voltage set proportional to Δx , calculated from Eq. $\Delta x = \Delta y / m$.
- For lines with m = 1, $\Delta x = \Delta y$ and the horizontal and vertical deflections voltages are equal.

Scan Converting A Line

• On raster system, lines are plotted with pixels, and **step size** (horizontal & vertical direction) are constrained by **pixel separation**.

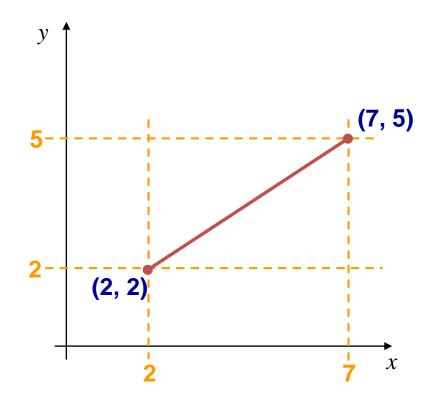


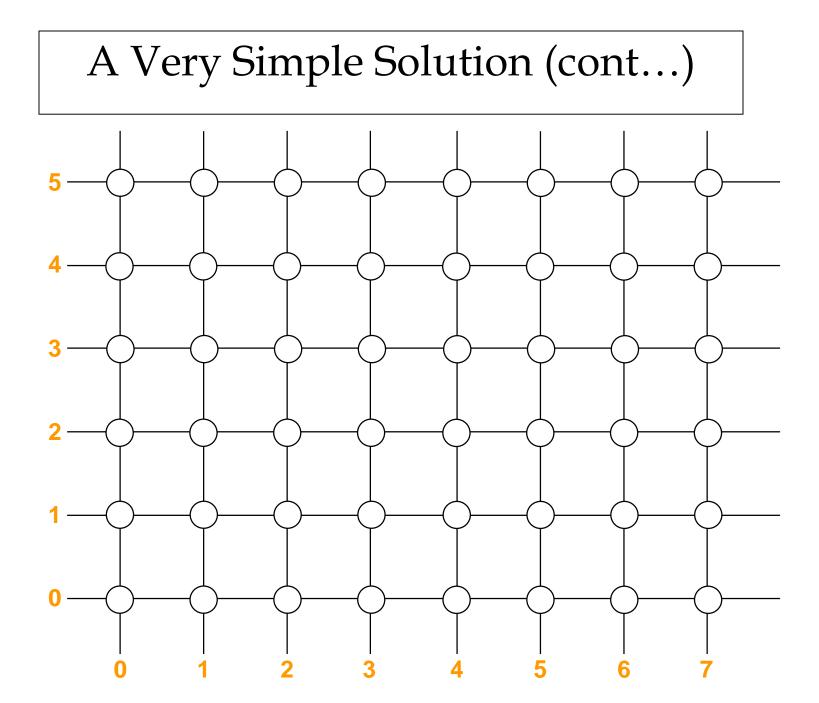
Scan Converting A Line
 We must sample a line at discrete positions and determine the nearest pixel to the line at each sampled position.



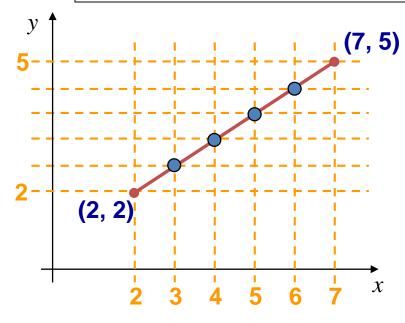
A Very Simple Solution

- We could simply work out the corresponding *y* coordinate for each unit *x* coordinate
- Let's consider the following example:





A Very Simple Solution (cont...)



• First work out *m* and *b*:

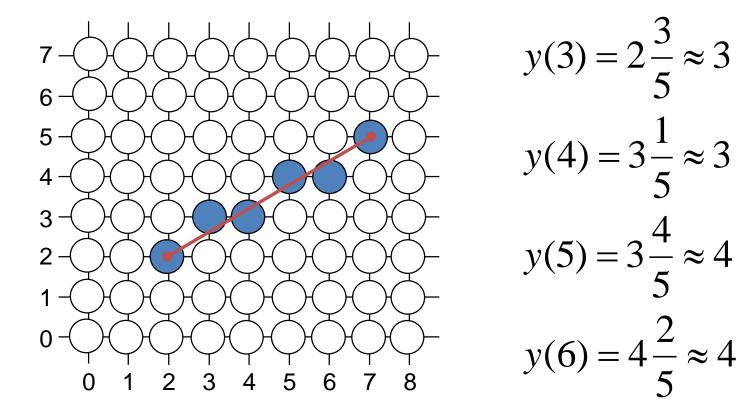
$$m = \frac{5-2}{7-2} = \frac{3}{5}$$
$$b = 2 - \frac{3}{5} * 2 = \frac{4}{5}$$

• Now for each *x* value work out the *y* value:

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5} \qquad y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$
$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5} \qquad y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$$

A Very Simple Solution (cont...)

• Now just round off the results and turn on these pixels to draw our line



A Very Simple Solution (cont...)

- However, this approach is just way too slow
- In particular look out for:
 - The equation y = mx + b requires the multiplication of m by x
 - Rounding off the resulting *y* coordinates
- We need a faster solution

A Quick Note About Slopes

- In the previous example we chose to solve the parametric line equation to give us the *y* coordinate for each unit *x* coordinate
- What if we had done it the other way around?
- So this gives us: $x = \frac{y-b}{1-b}$

• where:
$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$
 and $b = y_0 - m \cdot x_0$

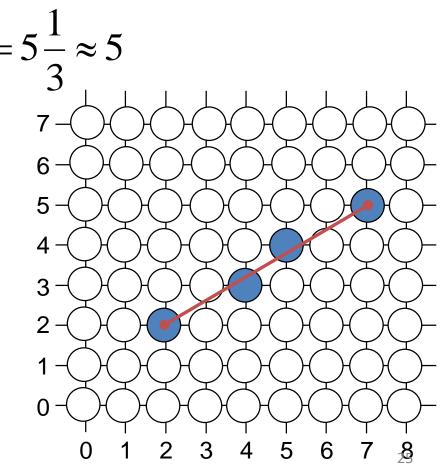
m

A Quick Note About Slopes (cont...)

• Leaving out the details this gives us:

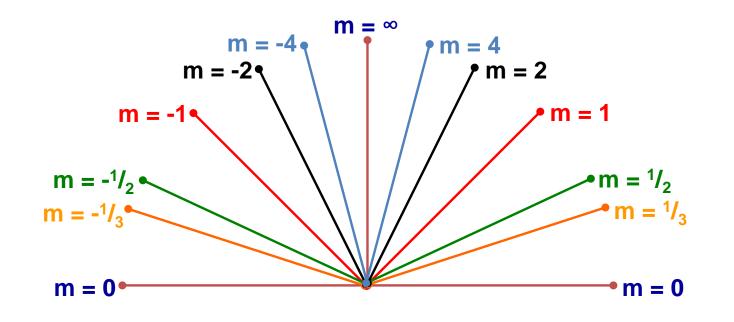
$$x(3) = 3\frac{2}{3} \approx 4$$
 $x(4) = 5\frac{1}{3} \approx 3$

- We can see easily that this line doesn't look very good!
- We choose which way to work out the line pixels based on the slope of the line



A Quick Note About Slopes (cont...)

- If the slope of a line is between -1 and 1 then we work out the *y* coordinates for a line based on it's unit *x* coordinates
- Otherwise we do the opposite *x* coordinates are computed based on unit *y* coordinates



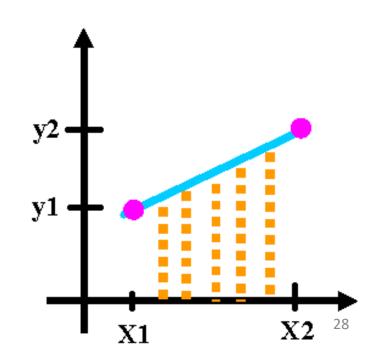
Digital Differential Analyzer (DDA Algorithm)

Digital Differential Analyzer Algorithm(DDA)

- Algorithm is an incremental scan conversion method.
- Based on calculating either Δy or Δx If |m| < 1,

$$\Delta y = m\Delta x$$

$$y_{K+1} = y_k + m$$



DDA Algorithm

If |m| > 1, $(\Delta y = 1)$

$$\Delta x = \frac{\Delta y}{m}, x_{K+1} = x_k + \frac{1}{m}$$

For the above cases it is assumed that lines are to be processed from the left endpoint to the right endpoint.

If the process is reverse,

Rotate and Rename coordinate axes

If
$$(\Delta x = -1)$$

 $\Delta y = m\Delta x$
 $y_{K+1} = y_k - m$

If
$$(\Delta y = -1)$$

 $\Delta y = m\Delta x$
 $x_{K+1} = x_k - \frac{1}{m}$

DDA Pseudo-code

Algorithm: DDA(float x1, float x2, float y1, float y2) var dx, dy, steps, k: Integer var xinc, yinc: real

```
Begin
Dx = x^2 - x^1
Dy=y2-y1
lf(abs(dx) > = abs(dy))
Then steps=abs(dx)
Else steps=abs(dy)
xinc = abs(dx/steps)
yinc = abs(dy/steps)
 x = x1;
 y = y1;
 setpixel(Round(x),Round(y),1);
 for k:=1 to steps
   do
   x := x + xinc;
   y := y + yinc;
   setpixel(Round(x),Round(y),1)
 end
end
```

Q: For each step, how many floating point operations are there?A: 4

Q: For each step, how many integer operations are there?A: 2

DDA Example

- Suppose we want to draw a line starting at pixel (2,3) and ending at pixel (12,8).
- What are the values of the variables x and y at each timestep?
- What are the pixels colored, according to the DDA algorithm?

steps = 12 - 2 = 10xinc = 10/10 = 1.0yinc = 5/10 = 0.5

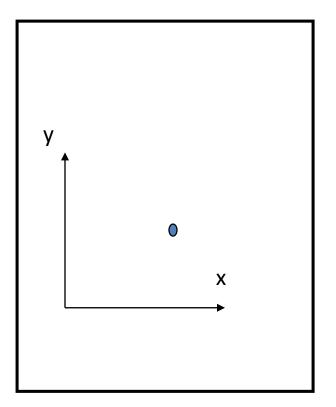
k	x	У	R(x)	R(y)
0	2	3	2	3
1	3	3.5	3	4
2	4	4	4	4
3	5	4.5	5	5
4	6	5	6	5
5	7	5.5	7	6
6	8	6	8	6
7	9	6.5	9	7
8	10	7	10	7
9	11	7.5	11	8
10	12	8	12	8 31

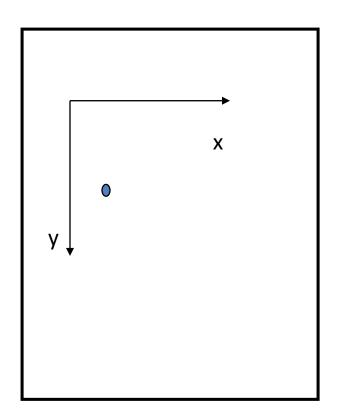
DDA ALGORITHM

Major advantages in the above approach :

- Faster method for calculating pixel positions than the direct use of Eq. y=mx+c
- It eliminates the multiplication by making use of raster characteristics, so that appropriate increments are applied in the x or y direction to step to pixel positions along the line path.
- Major disadvantages in the this approach :
 - The rounding operations and floating-point arithmetic in DDA algo. are still time-consuming.
 - We can improve the performance of the DDA algorithm by separating the increments *m* and *l*/*m* into integer and fractional parts so that all calculation are reduced to integer operations.

2D Cartesian Reference Frames



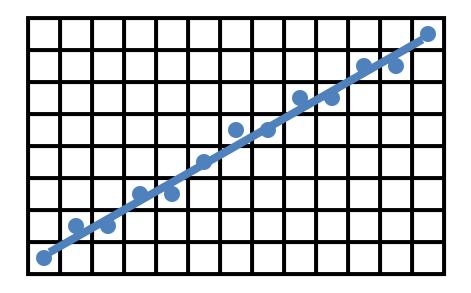


Coordinate origin at the lower-left screen corner

Coordinate origin in the upper-left screen corner

Lines

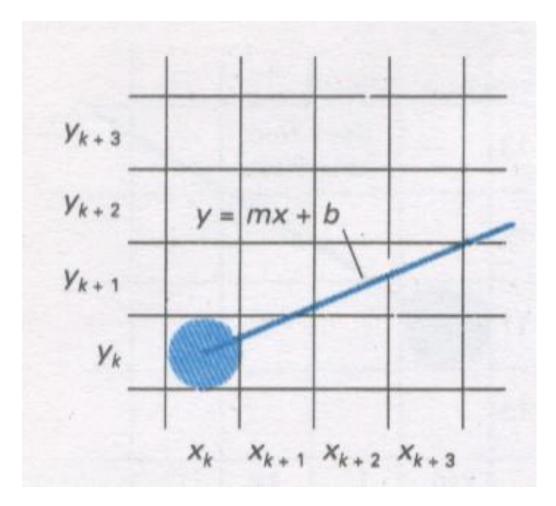
- Intermediate Positions between Two Endpoints
 - DDA, Bresenham's line algorithms

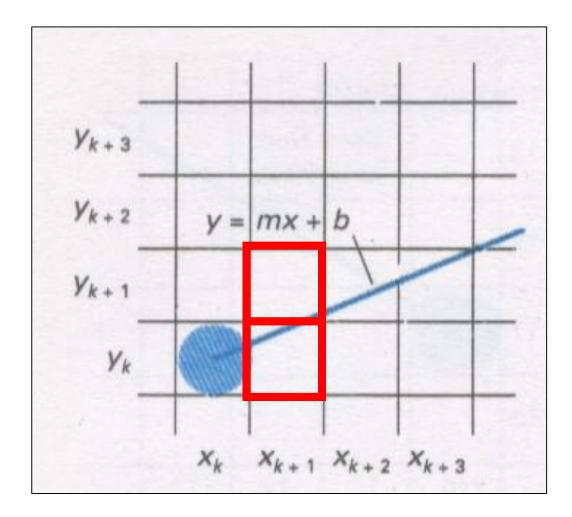


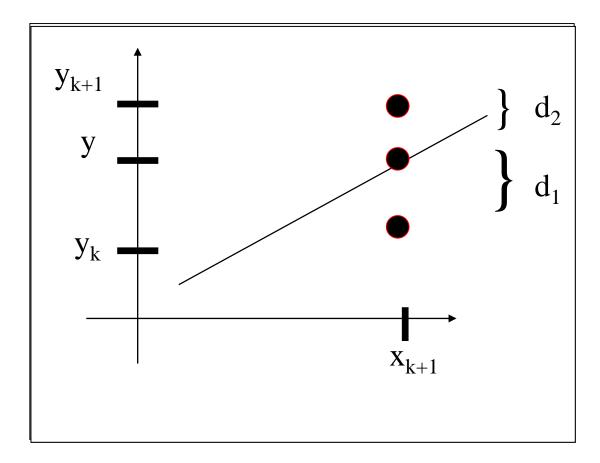
Bresenham's Line Drawing Algorithm

Bresenham's Line Algorithm

- An accurate, efficient raster line drawing algorithm developed by Bresenham, scan converts lines using only *incremental integer* calculations that can be adapted to display circles and other curves.
- Keeping in mind the symmetry property of lines, lets derive a more efficient way of drawing a line.
- Starting from the left end point (x_0, y_0) of a given line , we step to each successive column (x position) and plot the pixel whose scan-line y value closest to the line path
- Assuming we have determined that the pixel at (x_k, y_k) is to be displayed, we next need to decide which pixel to plot in column x_{k+1} .







Choices are $(x_k + 1, y_k)$ and $(x_k + 1, y_k + 1)$ $d_1 = y - y_k = m(x_k + 1) + b - y_k$ $d_2 = (y_k + 1) - y = y_k + 1 - m(x_k + 1) - b$

• The difference between these 2 separations is

 $d1 - d2 = 2m(x_k + 1) - 2y_k + 2b - 1$

• A decision parameter *p_k* for the *kth* step in the line algorithm can be obtained by rearranging above equation so that it involves only *integer calculations*

• Define

 $p_k = \Delta x \ (d_1 - d_2) = 2\Delta y x_k - 2 \ \Delta x y_k + c$

- The sign of *p*_k is the same as the sign of *d*₁-*d*₂, since Δ*x* > 0.
 Parameter c is a constant and has the value 2Δ*y* + Δ*x*(2*b*-1) (independent of pixel position)
- If *pixel at y_k* is closer to line-path than pixel at *y_k* +1
 (*i.e, if d₁ < d₂*) then *p_k* is negative. We plot lower pixel in such a case. Otherwise , upper pixel will be plotted.

Coordinate changes along the line occur in unit steps in either the x or y directions. Therefore, we can obtain the values of successive decision parameters using incremental integer calculations.

- At step k + 1, the decision parameter can be evaluated as, $p_{k+1} = 2\Delta y.x_{k+1} - 2\Delta x.y_{k+1} + c$
- Taking the difference of p_{k+1} and p_k we get the following. $p_{k+1} - p_k = 2\Delta y.(x_{k+1} - x_k)-2\Delta x.(y_{k+1} - y_k)$
- But, $x_{k+1} = x_k + 1$, so that $p_{k+1} = p_k + 2\Delta y - 2\Delta x(y_{k+1} - y_k)$

• Where the term y_{k+1} - y_k is either 0 or 1, depending on the sign of *parameter* p_k

- The first parameter p_0 is directly computed $p_0 = 2 \Delta y x_0 - 2 \Delta x y_0 + c = 2 \Delta y x_0 - 2 \Delta x y_0 + 2 \Delta y + \Delta x (2b-1)$
- Since (x_0, y_0) satisfies the line equation , we also have $y_0 = \Delta y / \Delta x * x_0 + b$
- Combining the above 2 equations , we will have

 $p_0 = 2\Delta y - \Delta x$

The constants $2\Delta y$ and $2\Delta y-2\Delta x$ are calculated once for each time to be scan converted

• So, the arithmetic involves only integer addition and subtraction of 2 constants

1. Input the two end points and store the left end point in (x_{0,y_0})

2. Load (x_0, y_0) into the frame buffer **(plot the first point)**

3. Calculate the constants Δx , Δy , $2\Delta y$ *and* $2\Delta y$ - $2\Delta x$ *and obtain the starting value for the decision parameter as*

$$p_0 = 2\Delta y - \Delta x$$

4. At each x_k along the line, starting at k=0, perform the following test:

If $p_k < 0$, the next point is (x_k+1, y_k) and

$$p_{k+1} = p_k + 2\Delta y$$

Otherwise Point to plot is (x_k+1, y_k+1) $p_{k+1} = p_k + 2\Delta y - 2\Delta x$

5. Repeat step 4 (above step) Δx times

Example 3-1 Bresenham Line Drawing

To illustrate the algorithm, we digitize the line with endpoints (20, 10) and (30, 18). This line has a slope of 0.8, with

$$\Delta x = 10, \qquad \Delta y = 8$$

The initial decision parameter has the value

$$p_0 = 2\Delta y - \Delta x = 6$$

and the increments for calculating successive decision parameters are

$$2\Delta y = 16$$
, $2\Delta y - 2\Delta x = -4$

We plot the initial point $(x_0, y_0) = (20, 10)$, and determine successive pixel positions along the line path from the decision parameter as

a tot a	CO.	0	(x. y.)	k	Dr	(x_{k+1}, y_{k+1})
a gola s	W AR D	P _k	(x_{k+1}, y_{k+1})	ALL SAL	Pk	V*K+17 7 K+17
hints and	0	6	(21, 11)	dig 500	6	(26, 15)
「ならいた	ihers (2	(22, 12)	6	2 9 2 9	(27, 16)
	2	-2	(23, 12)	7	-2	(28, 16)
Statute .	3 00	14	(24, 13)	8	14	(29, 17)
Internet	4bm	10	(25, 14)	9	10	(30, 18)

- Suppose we want to draw a line starting at pixel (2,3) and ending at pixel (12,8).
- What are the values of p0, dx and dy?
- What are the values of the variable p at each timestep?
- What are the pixels colored, according to Bresenham's algorithm?

$$dx = 12 - 2 = 10 2dy = 10 dy = 8 - 3 = 5 2dy - 2dx = -10 p0 = 2dy - dx = 15$$

t	р	P(x)	P(y)
0	0	2	3
1	-10	3	4
2	0	4	4
3	-10	5	5
4	0	6	5
5	-10	7	6
6	0	8	6
7	-10	9	7
8	0	10	7
9	-10	11	8
10	0	12	8 47

How do we draw a circle?

Properties of a circle:

• A circle is defined as a set of points that are all the given distance $(x_{\sigma}y_{c})$. This distance relationship is expressed by the pythagorean theorem in Cartesian coordinates as

 $(x - x_c)^2 + (y - y_c)^2 = r^2$

We could use this equation to calculate the points on the circle circumference by stepping along x-axis in unit steps from x_c-r to x_c+r and calculate the corresponding y values at each position as

 $y = y_c + (-) (r^2 - (xc - x)^2)^{1/2}$

- This is not the best method:
 - Considerable amount of computation
 - Spacing between plotted pixels is not uniform

Polar co-ordinates for a circle

• We could use polar coordinates r and θ,

 $x = x_c + r \cos\theta$ $y = y_c + r \sin\theta$

- A fixed angular step size can be used to plot equally spaced points along the circumference
- A step size of 1/r can be used to set pixel positions to approximately 1 unit apart for a continuous boundary
- But, note that circle sections in adjacent octants within one quadrant are symmetric with respect to the 45 deg line dividing the two octants
- Thus we can generate all pixel positions around a circle by calculating just the points within the sector from x=0 to x=y
- This method is still computationally expensive

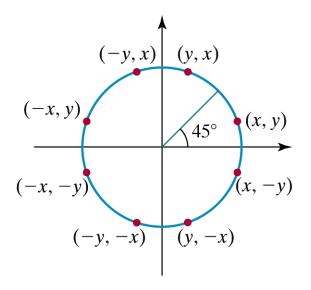


Figure 3-18

Symmetry of a circle. Calculation of a circle point (x, y) in one octant yields the circle points shown for the other seven octants.

We need to compute only one 45-degree segment to determine the circle

completely. For a circle centered at the origin (0,0), the eight symmetrical points can

be displayed with procedure circlepoints().

```
Void circlepoints (int x, int y)
```

```
ł
setpixel ( x, y);
setpixel (y, x);
setpixel (y, -x);
setpixel (x, -y);
setpixel ( -x, -y);
setpixel ( -y, -x);
setpixel (-y, x);
setpixel ( -x, y);
}
```

Suppose the point (xcenter, ycenter) is the center of the circle. Then the above function can be modified as:

```
Void circlepoints(xcenter, ycenter, x, y)
intxcenter, ycenter, x, y;
{
 setpixel ( xcenter + x, ycenter + y);
setpixel ( xcenter + y, ycenter + x);
setpixel ( xcenter + y, ycenter - x);
setpixel ( xcenter + x, ycenter - y);
setpixel ( xcenter - x, ycenter - y);
setpixel ( xcenter - y, ycenter - x);
setpixel ( xcenter - y, ycenter + x);
setpixel ( xcenter - x, ycenter + y);
}
```

Bresenham's ALGORITHM for circle

 Set the initial values of the variable: (h,k) coordinates of the center of the circle, x=0, y=r and d=3-2r

2. Test to determine whether the entire circle has been scan converted or not. If x>y stop.

3. Plot the eight points by symmetry w.r.t. the centre (h,k) at the current (x,y) coordinates.

Plot(x+h,y+k), Plot(y+h,x+k), Plot(-y+h,x+k), Plot(-x+h,y+k) , Plot(-x+h,-y+k), Plot(-y+h,-x+k), Plot(y+h,-x+k), Plot(x+h,-y+k)

4. Compute the location of the next pixel.

If d<0 then d=d+4x+6 and x=x+1

Else

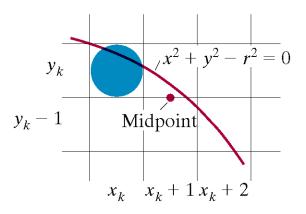
```
d=d+4(x-y)+10 and x=x+1, y=y-1
```

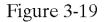
5. GOTO step 2

Bresenham to Midpoint

- Bresenham's line algorithm for raster displays is adapted to circle generation by setting up decision parameters for finding the closest pixel to the circumference at each sampling step.
- Bresenham's circle algorithm avoids square-root calculations by comparing the squares of the pixel separation distances.

- We will first calculate pixel positions for a circle centered around the origin (0,0). Then, each calculated position (x,y) is moved to its proper screen position by adding x_c to x and y_c to y
- Note that along the circle section from x=0 to x=y in the first octant, the slope of the curve varies from 0 to -1
- Therefore, we can take unit steps in the positive *x* direction over this octant and use a decision parameter to determine which of the two possible y positions is closer to the circle path at each step. Positions in the other seven octants are then obtained by symmetry.
- Circle function around the origin is given by $f_{circle}(x,y) = x^2 + y^2 r^2$
- Any point (x,y) on the boundary of the circle satisfies the equation $f_{circle}(x,y) = 0$



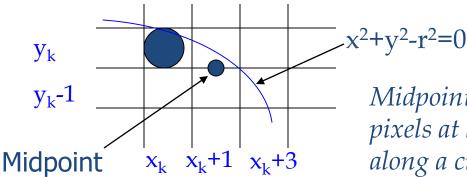


Midpoint between candidate pixels at sampling position $x_k + 1$ along a circular path.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

56

- For a point in the interior of the circle, the circle function is negative and for a point outside the circle, the function is positive
- Thus,
 - $f_{circle}(x,y) < 0$ if (x,y) is inside the circle boundary
 - $f_{circle}(x,y) = 0$ if (x,y) is on the circle boundary
 - $f_{circle}(x,y) > 0$ if (x,y) is outside the circle boundary



Midpoint between candidate pixels at sampling position x_k+1 along a circular path

- Assuming we have just plotted the pixel at (x_k, y_k) , we next need to determine whether the pixel at position $(x_k + 1, y_k-1)$ is closer to the circle
- Our decision parameter is the circle function evaluated at the midpoint between these two pixels

$$p_k = f_{circle} (x_k + 1, y_k - 1/2) = (x_k + 1)^2 + (y_k - 1/2)^2 - r^2$$

If $p_k < 0$, this midpoint is inside the circle and the pixel on the scan line y_k is closer to the circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we select the pixel on the scan line y_k -1

• Successive decision parameters are obtained using incremental calculations

$$p_{k+1} = f_{circle}(x_{k+1}+1, y_{k+1}-1/2)$$

= [(x_{k+1})+1]² + (y_{k+1}-1/2)² -r²

OR

 $p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1}^2 - y_k^2) - (y_k + 1 - y_k) + 1$ Where y_{k+1} is either y_k or y_{k-1} , depending on the sign of p_k

Increments for obtaining p_{k+1}:
 2x_{k+1}+1 if p_k is negative
 2x_{k+1}+1-2y_{k+1} otherwise

Case1:

If
$$p_k < 0$$
, then, $Y_{k+1} = Y_k$
 $p_{k+1} = p_k + 2(x_{k+1}) + 1 = p_k + 2x_k + 3$

Case2:

If
$$p_k > 0$$
, then $y_{k+1} = y_k - 1$
 $p_{k+1} = p_k + 2(x_k + 1) + 1((y_{k-1})^2 - y_k^2) - (y_{k-1} - y_k))$
then, $p_{k+1} = p_k + 2x_k + 3 + y_k^2 + 1 - 2y_k - y_k^2 + 1$
Then, $p_{k+1} = p_k + 2x_k - 2y_k + 5$
 $p_{k+1} = p_k + 2(x_k - y_k) + 5$

therefore, $p_{k+1} = p_k + 2(x_k - y_k) + 5$, for $p_k > 0$ and, $p_k + 2x_k + 3$ for $p_k < 0$

• Initial decision parameter is obtained by evaluating the circle function at the start position $(x_0, y_0) = (0, r)$ $p_0 = f_{circle}(1, r-1/2) = 1 + (r-1/2)^2 - r^2$

OR

 $P_0 = 5/4 - r$

• If radius r is specified as an integer, we can round p_0 to $p_0 = 1-r$

The Mid point Circle algorithm

- 1: Input radius r and circle center (x_c, y_c) and obtain the first point on the circumference of the circle centered on the origin as: $(x_0, y_0) = (0, r)$
- 2: Calculate the initial value of the decision parameter as

 $P_0 = 5/4 - r$ but for integer radius P0=1-r;

3: At each x_k position starting at k = 0 , perform the following test:

If $p_k < 0$, the next point along the circle centered on (0,0) is (x_{k+1}, y_k) and $p_{k+1} = p_k + 2x_k + 3$

The algorithm

Otherwise the next point along the circle is (x_{k+1}, y_{k-1}) and

$$p_{k+1} = p_{k+1} = p_k + 2(x_k - y_k) + 5$$

And $x_{k+1} = x_k + 1, \ y_{k+1} = y_k + 1$

Determine the other 7 octant points,

Move each calculated pixel position (x,y) onto the circular path centered on (x_c, y_c) and plot the coordinate values

5:
$$x = x + x_c$$
, $y = y + y_c$

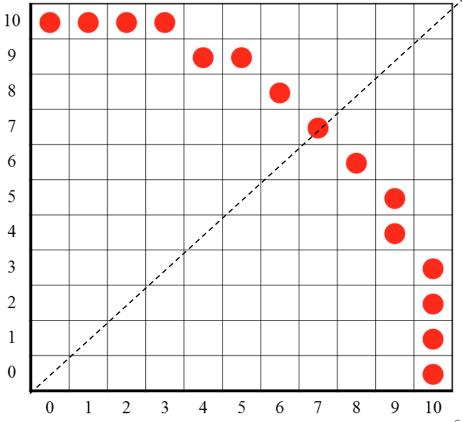
6: Repeat steps 3 through 5 until x >= y

Example

r = 10

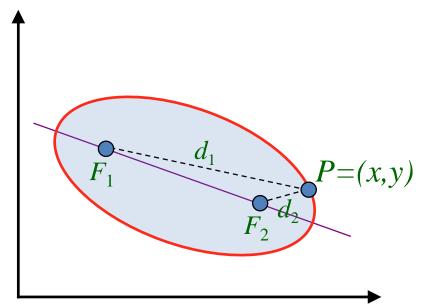
 $p_0 = 1 - r = -9$ (if *r* is integer round $p_0 = 5/4 - r$ to integer) Initial point $(x_0, y_0) = (0, 10)$

i	p_i	x_{i+1}, y_{i+1}	$2x_{i^+}$	$2y_{i^+}$
0	-9	(1, 10)	2	20
1	-6	(2, 10)	4	20
2	-1	(3, 10)	6	20
3	6	(4, 9)	8	18
4	-3	(5,9)	10	18
5	8	(6, 8)	12	16
6	5	(7, 7)		



Ellipse-Generating Algorithms

 <u>Ellipse</u> – A modified circle whose radius varies from a maximum value in one direction (major axis) to a minimum value in the perpendicular direction (minor axis).



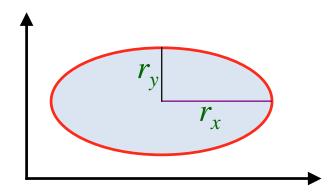
The sum of the two distances d_1 and d_2 , between the fixed positions F_1 and F_2 (called the *foci* of the ellipse) to any point P on the ellipse, is the same value, i.e.

 $d_1 + d_2 = \text{constant}$

Ellipse Properties

• Expressing distances d_1 and d_2 in terms of the focal coordinates $F_1 = (x_1, x_2)$ and $F_2 = (x_2, y_2)$, we have:

$$\sqrt{(x-x_1)^2 + (y-y_1)^2} + \sqrt{(x-x_2)^2 + (y-y_2)^2} = \text{constant}$$



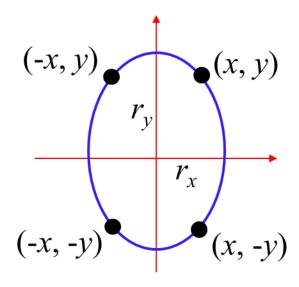
Cartesian coordinates:

$$\left(\frac{x-x_c}{r_x}\right)^2 + \left(\frac{y-y_c}{r_y}\right)^2 = 1$$

Polar coordinates:

Ellipse Algorithms

- Symmetry between quadrants
- Not symmetric between the two octants of a quadrant
- Thus, we must calculate pixel positions along the elliptical arc through one quadrant and then we obtain positions in the remaining 3 quadrants by symmetry

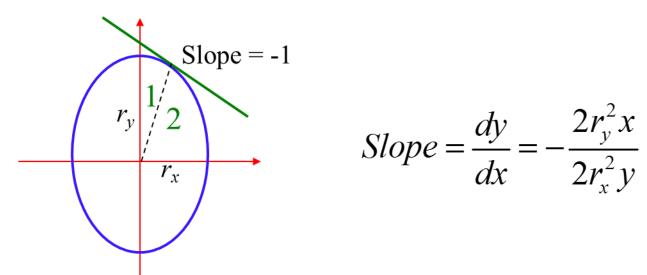


Ellipse Algorithms

$$f_{ellipse}(x, y) = r_y^2 x^2 + r_x^2 y^2 - r_x^2 r_y^2$$

• Decision parameter:

 $f_{ellipse}(x, y) = \begin{cases} < 0 & \text{if } (x, y) \text{ is inside the ellipse} \\ = 0 & \text{if } (x, y) \text{ is on the ellipse} \\ > 0 & \text{if } (x, y) \text{ is outside the ellipse} \end{cases}$



- Starting at (0, r_y) we take unit steps in the x direction until we reach the boundary between region 1 and region 2.
 Then we take unit steps in the y direction over the remainder of the curve in the first quadrant.
- At the boundary

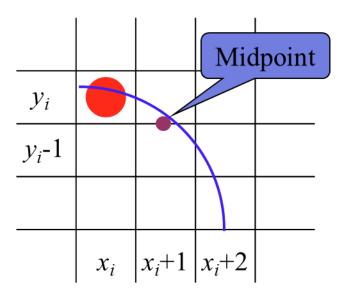
$$\frac{dy}{dx} = -1 \quad \Rightarrow \quad 2r_y^2 x = 2r_x^2 y$$

therefore, we move out of region 1 whenever

$$2r_y^2 x \ge 2r_x^2 y$$

69

Midpoint Ellipse Algorithm



Assuming that we have just plotted the pixels at (x_i, y_i) . The next position is determined by:

$$p1_{i} = f_{ellipse}(x_{i} + 1, y_{i} - \frac{1}{2})$$
$$= r_{y}^{2}(x_{i} + 1)^{2} + r_{x}^{2}(y_{i} - \frac{1}{2})^{2} - r_{x}^{2}r_{y}^{2}$$

If $p1_i < 0$ the midpoint is inside the ellipse $\Rightarrow y_i$ is closer If $p1i \ge 0$ the midpoint is outside the ellipse $\Rightarrow y_i - 1$ is closer

Decision Parameter (Region 1)

At the next position $[x_{i+1} + 1 = x_i + 2]$

$$p1_{i+1} = f_{ellipse}(x_{i+1} + 1, y_{i+1} - \frac{1}{2})$$
$$= r_y^2 (x_i + 2)^2 + r_x^2 (y_{i+1} - \frac{1}{2})^2 - r_x^2 r_y^2$$

OR

$$p1_{i+1} = p1_i + 2r_y^2(x_i + 1)^2 + r_y^2 + r_x^2 \left[(y_{i+1} - \frac{1}{2})^2 - (y_i - \frac{1}{2})^2 \right]$$

where $y_{i+1} = y_i$ or $y_{i+1} = y_i - 1$

 $\begin{array}{l} \textbf{Decision Parameter (Region 1)} \\ \textbf{Decision parameters are incremented by:} \\ \textit{increment} = \begin{cases} 2r_y^2 x_{i+1} + r_y^2 & \text{if } p1_i < 0 \\ 2r_y^2 x_{i+1} + r_y^2 - 2r_x^2 y_{i+1} & \text{if } p1_i \ge 0 \end{cases} \end{array}$

Use only addition and subtraction by obtaining $2r_y^2 x$ and $2r_x^2 y$

At initial position $(0, r_y)$

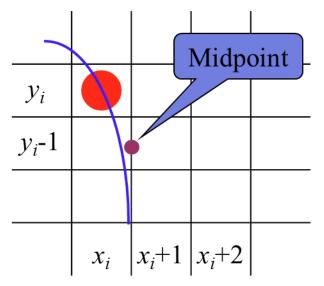
$$2r_y^2 x = 0$$

$$2r_x^2 y = 2r_x^2 r_y$$

$$p1_{0} = f_{ellipse}(1, r_{y} - \frac{1}{2}) = r_{y}^{2} + r_{x}^{2}(r_{y} - \frac{1}{2})^{2} - r_{x}^{2}r_{y}^{2}$$
$$= r_{y}^{2} - r_{x}^{2}r_{y} + \frac{1}{4}r_{x}^{2}$$

Region 2

Over region 2, step in the negative y direction and midpoint is taken between horizontal pixels at each step.



Decision parameter:

$$p2_{i} = f_{ellipse}(x_{i} + \frac{1}{2}, y_{i} - 1)$$
$$= r_{y}^{2}(x_{i} + \frac{1}{2})^{2} + r_{x}^{2}(y_{i} - 1)^{2} - r_{x}^{2}r_{y}^{2}$$

If $p2_i > 0$ the midpoint is outside the ellipse $\Rightarrow x_i$ is closer If $p2i \le 0$ the midpoint is inside the ellipse $\Rightarrow x_i + 1$ is closer

Decision Parameter (Region 2)

At the next position $[y_{i+1} - 1 = y_i - 2]$

$$p2_{i+1} = f_{ellipse}(x_{i+1} + \frac{1}{2}, y_{i+1} - 1)$$

= $r_y^2 (x_{i+1} + \frac{1}{2})^2 + r_x^2 (y_i - 2)^2 - r_x^2 r_y^2$

OR

$$p2_{i+1} = p2_i - 2r_x^2(y_i - 1) + r_x^2 + r_y^2 \left[(x_{i+1} + \frac{1}{2})^2 - (x_i + \frac{1}{2})^2 \right]$$

where $x_{i+1} = x_i$ or $x_{i+1} = x_i + 1$

Decision Parameter (Region 2)

Decision parameters are incremented by:

increment =
$$\begin{cases} -2r_x^2 y_{i+1} + r_x^2 & \text{if } p2_i > 0\\ 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_x^2 & \text{if } p2_i \le 0 \end{cases}$$

At initial position (x_0, y_0) is taken at the last position selected in region 1

$$p2_0 = f_{ellipse}(x_0 + \frac{1}{2}, y_0 - 1)$$

= $r_y^2 (x_0 + \frac{1}{2})^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$

Midpoint Ellipse Algorithm

1. Input r_x , r_y , and ellipse center (x_c , y_c), and obtain the first point on an ellipse centered on the origin as

 $(x_0, y_0) = (0, r_y)$

2. Calculate the initial parameter in region 1 as

$$p1_0 = r_y^2 - r_x^2 r_y + \frac{1}{4} r_x^2$$

3. At each x_i position, starting at i = 0, if $p1_i < 0$, the next point along the ellipse centered on (0, 0) is $(x_i + 1, y_i)$ and

$$p1_{i+1} = p1_i + 2r_y^2 x_{i+1} + r_y^2$$

otherwise, the next point is $(x_i + 1, y_i - 1)$ and

$$p1_{i+1} = p1_i + 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_y^2$$

and continue until $2r_y^2 x \ge 2r_x^2 y$

76

Midpoint Ellipse Algorithm

4. (x_0, y_0) is the last position calculated in region 1. Calculate the initial parameter in region 2 as

$$p2_0 = r_y^2 (x_0 + \frac{1}{2})^2 + r_x^2 (y_0 - 1)^2 - r_x^2 r_y^2$$

5. At each y_i position, starting at i = 0, if $p2_i > 0$, the next point along the ellipse centered on (0, 0) is $(x_i, y_i - 1)$ and

$$p2_{i+1} = p2_i - 2r_x^2 y_{i+1} + r_x^2$$

otherwise, the next point is $(x_i + 1, y_i - 1)$ and

$$p2_{i+1} = p2_i + 2r_y^2 x_{i+1} - 2r_x^2 y_{i+1} + r_x^2$$

Use the same incremental calculations as in region 1. Continue until y = 0.

- 6. For both regions determine symmetry points in the other three quadrants.
- 7. Move each calculated pixel position (x, y) onto the elliptical path centered on (x_c, y_c) and plot the coordinate values

$$x = x + x_c, \qquad y = y + y_c$$

Example $r_x = 8$, $r_y = 6$ $2r_y^2 x = 0$ (with increment $2r_y^2 = 72$) $2r_x^2 y = 2r_x^2 r_y$ (with increment $-2r_x^2 = -128$) Region 1 $(x_0, y_0) = (0, 6)$ $p1_0 = r_y^2 - r_x^2 r_y + \frac{1}{4}r_x^2 = -332$

i	p_i	x_{i+1}, y_{i+1}	$2r_y^2 x_{i+1}$	$2r_{x}^{2}y_{i+1}$	
0	-332	(1, 6)	72	768	
1	-224	(2, 6)	144	768	
2	-44	(3, 6)	216	768	
3	208	(4, 5)	288	640	
4	-108	(5, 5)	360	640	
5	288	(6, 4)	432	512	
6	244	(7, 3)	504	³⁸⁴ N	1

Move out of region 1 since

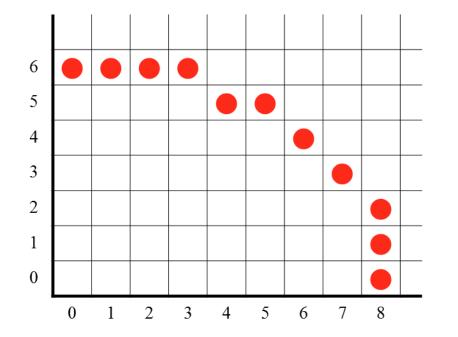
 $2r_{v}^{2}x > 2r_{x}^{2}y$

Example

Region 2

 $(x_0, y_0) = (7, 3)$ (Last position in region 1) $p2_0 = f_{ellipse}(7 + \frac{1}{2}, 2) = -151$

i	p_i	x_{i+1}, y_{i+1}	$2r_{y}^{2}x_{i+1}$	$2r_{x}^{2}y_{i+1}$	_
0	-151	(8, 2)	576	256	-
	233	(8, 1)	576	128	
2	745	(8,0)	-	-	Stop at $y = 0$



References:

- 1.Computer Graphics C version by Donald Hearn and M.P. Baker
- 2.<u>http://www.geeksforgeeks.org/dda-line-</u> generation-algorithm-computer-graphics/
- 3.<u>https://users.soe.ucsc.edu/~pang/160/f12/slides</u> /dda2.pdf