
Filled Area Primitives

By
Poonam Saini

Dept. of Computer Science & Engineering
Sir Padampat Singhania University

Udaipur 101-Feb-20

Filled Area Primitives

201-Feb-20

Polygon
•Vertex = point in space (2D or 3D)

•Polygon = ordered list of vertices

Each vertex connected with the next in the list

Last is connected with the first

Maybe more than one – polygons with holes

May contain self-intersections

•A surface which is closed one and bounded by a

straight line segments is known as polygon.

•The line segments are called edges or sides of the
polygon.

•The point of intersection of two edges is called as
vertex of the polygon.

301-Feb-20

Polygon
•Types of Polygons:
1. Regular Polygons: The polygons having equal

length of all edges with internal/external angle
between any two connected edges are same
are known as regular polygons.

2. Irregular Polygons: The polygons having
different length of edges and the angles
between any two connected edges are same.

3. Convex Polygons: Take two points inside the
polygon and join these points by a straight line.
If all the points on this line lies inside the
polygon, then its is a convex polygon.

4. Concave Polygon
401-Feb-20

Scan-Line Polygon Fill Algorithm

For each scan line crossing a polygon, the
area-fill algorithm locates the intersection
points of the scan line with the polygon
edges.
These intersection points are then sorted
from left to right, and the corresponding
frame-buffer positions between each
intersection pair are set to the specified fill
color.

501-Feb-20

Scan-Line Fill Algorithm

601-Feb-20

Calculations performed in scan-conversion and
other graphics algorithms typically take advantage
of various coherence properties of a scene that is to
be displayed.
Coherence is simply that the properties of one part
of a scene are related in some way to other parts of
the scene so that the relationship can be used to
reduce processing.
Coherence methods often involve incremental
calculations applied along a single scan line or
between successive scan lines.

Scan-Line Polygon Fill Algorithm

701-Feb-20

Spatial Coherence: The adjacent pixels are likely
to have the same characteristics. This property is
known as spatial coherence.

Scan Line Coherence: Adjacent pixels on a scan
line are likely to have the same characteristics.
This is called scan line coherence.

Note: These two properties are useful in scan
converting a polygon.

Scan-Line Polygon Fill Algorithm

801-Feb-20

•Some scan line intersections at polygon
vertices require special handling.

•For eg. : A scan line passing through a
vertex intersects two polygon edges at
that position

Scan-Line Polygon Fill Algorithm

901-Feb-20

V1 V2

V3

V4

V5

V6

V7

V8

V9

Scan Line y’

Scan Line y

1

1 2 1

2 1
1

• Scan line y’ generates

an even number of

intersections that can

be paired to identify

correctly the interior

pixel spans.

• To identify the

interior pixels for

scan line y, we must

count the vertex

intersection as only

one point.

Fig.: Intersection points along the scan lines

that intersect polygon vertices.

Scan-Line Polygon Fill Algorithm

1001-Feb-20

• In case of scan line y, we need to do some
additional processing to determine the correct
interior points.
•Consider the vertex V7, both the edges are on

the same sides whereas in case of vertex V5
both the edges are in the opposite direction.
Therefore we have to work on V5.

•These kind of vertices can be traces either in
clockwise direction or anticlockwise and
observe relative changes in y coordinates of the
vertex.

Scan-Line Polygon Fill Algorithm

1101-Feb-20

•If the end point y values of two consecutive
edges monotonically increases or decreases,
we count the middle vertex as a single
intersection point for any scan line passing
through that vertex otherwise two edge
intersections can be added to the
intersection list.

Scan-Line Polygon Fill Algorithm

1201-Feb-20

Scan Line y
k
 + 1

Scan Line y
k

(X
k + 1

, Y
k + 1

)

(X
k
, Y

k
)

Scan-Line Polygon Fill Algorithm

•In determining the edge intersection, we can
set up an incremental coordinate calculation
along any edge by exploiting the fact that
the slope of the edge is constant from one
scan line to the next.

Fig.: Two successive scan lines intersecting

polygon boundary
1301-Feb-20

Scan-Line Polygon Fill Algorithm

•The slope of the edge is constant from one
scan line to the next:
•let m denote the slope of the edge.

•Each successive x is computed by adding the
inverse of the slope and rounding to the
nearest integer

m
xx

yy

kk

kk

1

1

1

1









1401-Feb-20

• Recall that slope is the ratio of two
integers:

• So, incremental calculation of x can be
expressed as

Scan-Line Polygon Fill Algorithm

x

y
xx

x

y
m

kk










1

1501-Feb-20

Inside-Outside Tests

 Area-filling algorithms and other graphics
processes often need to identify interior
regions of objects.

 To identify interior regions of an object
graphics packages normally use Odd-Even
method for inside-outside test.

1601-Feb-20

Odd-Even rule (Odd Parity Rule, Even-Odd Rule):
1. draw a line from any position P to a distant point

outside the coordinate extents of the object and
counting the number of edge crossings along the
line.

2. If the number of polygon edges crossed by this line
is odd then

P is an interior point.
else

P is an exterior point

Inside-Outside Tests

1701-Feb-20

Sorted Edge Table
• In SET, there is an entry for each scanline.

• Traverse edges of the polygon to construct a Sorted Edge Table

(SET)

1.Eliminate horizontal edges

2.Add edge to linked-list for the scan line corresponding to

the y_lower vertex. Shorten edges if necessary to resolve the

vertex-intersection problem.

3.For each edge entry, store the following:

- y_upper: the largest y value on that edge (last scanline to

consider)

- x_lower: the x intercept at that scanline (initial x value)

- 1/m: for incrementing x

4.For each scan line the edges are sorted from left to right

(based on x) 1801-Feb-20

Active Edge Table

•Construct Active Edge List during scan
conversion. AEL is a linked list of active
edges on the current scanline, y. The active
edges are kept sorted by x
The active edge list contains all the edges
crossed by that scan line.
As we move up, update the active edge
list using the sorted edge table if necessary.

1901-Feb-20

Scan line polygon fill Algorithm
1.Set y to the smallest y coordinate that has an entry in the SET; i.e,

y for the first nonempty bucket.

2.Initialize the AEL to be empty.

3.For each scanline y repeat:

(a) Copy from SET bucket y to the AEL those edges whose

y_min = y (entering edges).

(b) The sort the AEL on x is easier because SET is presorted.

(c) Fill in desired pixel values on scanline y by using pairs of x

coordinates from AEL.

(d) Remove from the AEL those entries for which

y = y_max (edges not involved in the next scanline.)

(e) Increment y by 1 (to the coordinate of the next scanline).

(f) For each nonvertical edge remaining in the AEL, update x for the

new y.

2001-Feb-20

Boundary-Fill Algorithm
Start at a point inside a region and paint the
interior outward toward the boundary. If the
boundary is specified in a single color, the fill
algorithm proceeds outward pixel by pixel
until the boundary color is encountered.

It is useful in interactive painting packages,
where interior points are easily selected.

The inputs of the this algorithm are:
• Coordinates of the interior point (x, y)
• Fill Color
• Boundary Color

2101-Feb-20

Boundary-Fill Algorithm
(contd..)

Starting from (x, y), the algorithm tests
neighboring pixels to determine whether
they are of the boundary color. If not, they
are painted with the fill color, and their
neighbors are tested. This process continues
until all pixels up to the boundary have been
tested.

 There are two methods for proceeding to
neighboring pixels from the current test
position:

2201-Feb-20

1. The 4-connected
method.

2. The 8-connected
method.

Boundary-Fill Algorithm
(contd..)

01-Feb-20

void boundaryFill4 (int x, int y, int fillColor, int borderColor)

{ int interiorColor;

/* set current color to fillColor, then perform following operations. */

getPixel (x, y, interiorColor);

if ((interiorColor != borderColor) && (interiorColor != fillColor))

{

setPixel (x, y); // set color of pixel to fillColor

boundaryFill4 (x + 1, y, fillColor, borderColor);

boundaryFill4 (x - 1, y, fillColor, borderColor);

boundaryFill4 (x, y + 1, fillColor, borderColor);

boundaryFill4 (x, y - 1, fillColor, borderColor);

} }

Boundary-Fill Algorithm
(contd..)

2401-Feb-20

Flood-Fill Algorithm

Sometimes we want to fill in
(or recolor) an area that is
not defined within a single
color boundary. We can paint
such areas by replacing a
specified interior color
instead of searching for a
boundary color value. This
approach is called a flood-fill
algorithm.

01-Feb-20

We start from a specified interior point (x, y)
called the seed point . Then using a 4-
connected or 8-connected approach, the
entire area can be filled by a specified color.

If they have a color which is that of the
boundary then do not consider the pixel.

If color is different then color the pixel with
the desired color.

The process will be recursive one and stopped
when there is no neighbouring pixel which can
be colored.

Flood-Fill Algorithm

2601-Feb-20

void floodFill4 (int x, int y, int fillColor, int interiorColor)

{ int color;

/* set current color to fillColor, then perform following operations. */

getPixel (x, y, color);

if (color = interiorColor)

{

setPixel (x, y); // set color of pixel to fillColor

floodFill4 (x + 1, y, fillColor, interiorColor);

floodFill4 (x - 1, y, fillColor, interiorColor);

floodFill4 (x, y + 1, fillColor, interiorColor);

floodFill4 (x, y - 1, fillColor, interiorColor);

}

}

Flood-Fill Algorithm

2701-Feb-20

Attributes of Output Primitives

2801-Feb-20

Attributes of Output Primitives

•Definition: Parameter that affects the way a
primitive will be displayed.

•Consider only those attributes that control
the basic display properties of primitives.

•For eg.: Lines can be dotted or dashed. Fat
or thin & blue or orange.

2901-Feb-20

Line Attributes

•Basic attributes of a Line are

1. Type

2. Width

3. Color

3001-Feb-20

Line Attributes

•1. Type Attribute

•Solid _________________

•Dotted – very short dash with spacing equal to
or greater than dash itself.

……………………………….

•Dashed – displayed by generating an interdash
spacing

3101-Feb-20

Line Attributes

•2. Width Attribute
•Specify in pixels and proportion of a standard
line width.
•Thicker line can be produced by:
- Adding extra pixel vertically when |m| < 1
- Adding extra pixel horizontally when |m| > 1
•Issues:

-Line have different thickness on the slope.
-Problem with End of the line and Joining the
two lines (polygon) 3201-Feb-20

Line Attributes

•2. Width Attribute
The problem raised due to different shapes at the end of
the line can be solved by adding line endcaps.

3301-Feb-20

Line Attributes

•2. Width Attribute
(a) Butt Cap: It is obtained by adjusting the end
positions of the lines so that the thick line is
displayed with square ends are perpendicular to
the line path. If specified line has slope m, the
square end of the thick line has slope -1/m.

3401-Feb-20

Line Attributes

2. Width Attribute
(b) Round Cap: It is obtained by adding a filled
semicircle to each butt cap. The circular areas are
centered on the line endpoints and have a
diameter equal to the line thickness.

3501-Feb-20

Line Attributes

•2. Width Attribute
(c) Projecting Square Cap: In this type, we simply
extend the line and add butt caps that are
positioned one half of the line width beyond the
specified end points.

3601-Feb-20

Line Attributes

•2. Width Attribute
A smoothly connected series of line segments can
not be produced as thick lines using horizontal
and vertical pixel spans, leave pixel gaps at the
boundaries between lines of different slopes
where there is a shift from horizontal spans to
vertical spans. There are some method for
smoothly joining two lines of segments.

3701-Feb-20

Methods for smoothly joining two lines of segments

1. Mitter Join : It is accomplished by
extending the outer boundaries of each of
the two lines until they meet.

Line Attributes

3801-Feb-20

Methods for smoothly joining two lines of segments

2. Round Join : It is produced by capping the
connection between the two segments with
a circular boundary whose diameter is equal
to the line width.

Line Attributes

3901-Feb-20

Methods for smoothly joining two lines of segments

3. Bevel Join : It is generated by displaying
the line segments with butt caps felling in
triangular gaps where the segments meet.

Line Attributes

4001-Feb-20

Line Attributes

3. Color Attribute
•Colors are represented by colors codes which are
positive integers.
•Color information is stored in frame buffer or in
separate table and use pixel values as index to
the color table.
•Number of color choices depends on the no. of
bits available per pixel in the frame buffer.
•Two ways to store color information :

1. Direct
2. Indirect

4101-Feb-20

•1. Direct

Line Attributes

4201-Feb-20

•1. Indirect
Line Attributes

4301-Feb-20

•The appearance of displayed characters
is controlled by attributes such as font,
size, color, and orientation.

•Attributes can be set both for entire
character strings (text) and for
individual characters defined as marker
symbols.

Character Attributes

4401-Feb-20

1. Text Attributes:

•First of all, there is the choice of font (or
typeface), which is a set of characters with a
particular design style such as New York,
Courier, Helvetica, London, 'Times Roman’,
and various special symbol groups.

•The characters in a selected font can also be
displayed with assorted underlining styles
(solid, dotted , double), in boldface, in
italics. and in outline or shadow styles.

Character Attributes

4501-Feb-20

1. Text Attributes:

•A particular font and associated style is
selected in a PHlGS program by setting an
integer code for the text font parameter tf in
the function.

•Color settings for displayed text are stored in
the system attribute list and used by the
procedures that load character definitions into
the frame buffer.

•When a character string is to be displayed, the
current color is used to set pixel values in the
frame buffer corresponding to the character
shapes and positions

Character Attributes

4601-Feb-20

1. Text Attributes:

•Point measurements specify the size of the
body of a character but different fonts with the
same points specifications can have different
character size depending on the design of the
typeface.

Character Attributes

4701-Feb-20

1. Text Attributes:

•The distance between the bottom line and
the top line of the character body is the
same for all characters in a particular size
and typeface, but the body width may vary.

•Character height is defined as the distance
between the baseline and the cap line of
characters.

Character Attributes

4801-Feb-20

Orientation
The orientation for a displayed character
string is set according to the direction of the
character up vector in which x and y
components are specified.

•Text is then displayed so that the orientation
of characters from baseline to capline is in
the direction of the up vector.

Character Attributes

4901-Feb-20

Orientation
The direction of the up vector is 450and
text would be displayed as

Character Attributes

5001-Feb-20

Orientation

 A combination of textpath and upvector can
be used to display the slanting text. As Up vector
controls the direction of the text path.

Character Attributes

5101-Feb-20

Orientation

Text-path can be set in right, left, up or down

Character Attributes

5201-Feb-20

Text Alignment

This attribute specifies how text is to be
positioned with respect to the start
coordinates.

•Horizontal alignment is set by assigning
value left, centre, or right.

•Vertical alignment is set by assigning value
top, cap, half, base, or bottom

Character Attributes

5301-Feb-20

Text Alignment

Character Attributes

5401-Feb-20

•Options for filling a defined region include a
choice between a solid color or a patterned
fill and choices for the particular colors and
patterns. These fill options can be applied to
polygon regions or to areas defined with
curved boundaries, depending on the
capabilities of the available package. In
addition, areas can be painted using various
brush styles, colors, and transparency
parameters.

Area-Fill Attributes

5501-Feb-20

Fill Styles:

•Areas are displayed
with three basic fill
styles:

-Hollow with a color

border

- filled with a solid
color,

- filled with a specified
pattern or design.

Area-Fill Attributes

Hollow

Solid

Patterened 5601-Feb-20

Fill Styles:

•A polygon hollow fill is generated with line
drawing routines as a closed polyline.

•Another value for fill style is hatch, which is
used to fill an area with selected hatching
patterns-parallel lines or crossed lines.

•Hollow areas are displayed using only the
boundary outline, with the interior color the
same as the background color.

Area-Fill Attributes

5701-Feb-20

Fill Styles:

•Solid fill of a region can be accomplished with
the scan-line procedures.

•Other fill options include specifications for the
edge type, edge width, and edge color of a
region.

•These attributes are set independently of the
fill style or fill color, and they provide for the
same options as the line-attribute parameters

Area-Fill Attributes

5801-Feb-20

Pattern Fill:

•The process of filling an area with a
rectangular pattern is called tilling and
rectangular fill patterns are refered to as tiling
pattern.

Area-Fill Attributes

5901-Feb-20

Pattern Fill:

•To superimpose a selected pattern on scan
lines, the scan line procedures are to be
modified.

•Beginning from a specified start position for
pattern fill, the rectangular patterns should be
mapped vertically to scan lines between the
top and bottom of fill area and horizontally to
interior pixel position across these scan lines.

Area-Fill Attributes

6001-Feb-20

Pattern Fill:

Area-Fill Attributes

6101-Feb-20

Pattern Fill:

Area-Fill Attributes

6201-Feb-20

Soft Fill:

•Modified boundary-fill and flood-fiII procedures that are
applied to repaint areas so that the fill color is combined
with the background colors are referred to as soft-fill .

•One use for these fill methods is to soften the fill colors
at object borders that have been blurred to antialias the
edges.

•Another is to allow repainting of a color area that was
originally filled with a semitransparent brush, where the
current color is then a mixture of the brush color and the
background colors "behind" the area. In either case, we
want the new fill color to have the same variations over
the area as the current fill color.

Area-Fill Attributes

6301-Feb-20

