

SIR PADAMPAT SINGHANIA UNIVERSITY UDAIPUR

July 2021

SIR PADAMPAT SINGHANIA UNIVERSITY

Udaipur

COURSE PLAN of	<u>CS-2201</u>	Data Structures
Name of the Course Teacher(s)	: Poonam Saini	
Course Coordinator	: Poonam Saini	
Branch: CSE/CTIS	Semester: III	Year: 2 nd
Course Code: CS-2201	L-T-P-S-C: 3-0-0-X-3	w.e.f. July 2021
Contact Hours	:3	

Moodle Page Link: http://poonamsainispsu.gnomio.com

Prerequisite: Structured Programming Approach

Program Specific Outcomes (PSO's)

- PSO1: The ability to understand, analyse and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.
- PSO2: The ability to understand the evolutionary changes in computing, apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success, real world problems and meet the challenges of the future

Course Objectives:

- To introduce the fundamental concepts of data structures and to emphasize the importance of data structures in developing and implementing efficient algorithms.
- To strengthen the abilities of the students to identify and apply suitable data structures for solving real world problems.
- To impart the knowledge of various sorting and searching techniques.

Course Outcomes:

After successful completion of this course, the students will be able to

- CO1: **Understand** different categories of data Structures, **identify** different parameters to analyze the performance of an algorithm and to choose appropriate data structures to solve real world problems efficiently.
- CO2: Apply algorithms to perform operations on Linear data structures
- CO3: Apply algorithms to perform operations on Non-linear data Structures
- CO4: Illustrate various technique for searching & Sorting

Course Outcomes (Weightage): (SUM TOTAL OF ALL WEIGHTAGES 100%)

Course Outcomes	CO1	CO2	CO3	CO4	Total
Weightage %	10	35	35	20	100

Mapping of COs to POs

S.	Subject	Subject	Ρ	Ρ	Р	Ρ	Р	Р	Ρ	Р	Р	Р	Р	Р	Ρ	SO1	PSO2
No.	Name	Code	0	0	0	0	0	0	0	0	0	0	0	0			
	_		1	2	3	4	5	6	7	8	9	10	11	12			
1	Database	CS-3003	2	2	2	2	1	-	_	-	-	-	-	1		1	1
	Management																
	System																

									CO	PO M	appir	g		. 1																
		(3/2	2/1 i	ndie	cate	s st	ren	gth (of c	orrelat	ion) 3 [.]	-Stron	g, 2-M	edium,	1-Weak															
		Programme Outcomes (POs)														Programme Outcomes (POs)														
COs	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O1	PSO 2	Weightage %															
CO1	2	2	2	2	-	-	-	-	-	-	-	1	1	1	10															
CO2	2	2	2	2	1	-	-	-	-	-	-	1	1	1	35															
CO3	2	2	2	2	1	-	-	-	ī	-		1	1	1	35															
CO4	2	2	2	2	1	-	-	Ē	-	-	-	1	1	1	20															

Andragogic Plan including sequencing of lectures

L1= Remember, L2= Understand, L3=Apply, L4= Analyze, L5=Evaluate, L6= Create

Sr. No.	Topics (smallest unit for which Blooms Taxonomy has been used)	LEVEL	Andragogy	No. of Sessions	CO (Weightage) SUM OF WEIGHTAGES FOR EACH CO TO BE 100%
			Module-01		
1	Introduction: data, structure, data structure, need of data structure, characteristics of data structure, ADT	L2	Class room	1	1(CO1)
2	Overview of Linear Data Structures	L1	Class room	1	1.5(CO1)
3	Overview of Non-Linear Data Structures, Operations on Data Structures	L1	Class room	1	1.5(CO1)
4	Application areas of different data structures, Refinement stages to solve a complex problem	L3, L2, L1	Flipped Class	1	2(CO1)
5	Algorithm characteristics, Approaches for designing an algorithm	L2	Class room	1	1(CO1)
6	Analysis of Algorithm, Time & Space Complexity	L2	Class room	1	2(CO1)
7	Big O Notation, Types of Analysis	L2	Class room	1	1(CO1)
8	Arrays: Linear Representation of an Array, 2- D Arrays: Row Major and Column Maor Order	L2	Flipped Class	1	1(CO2)
9	Algorithm of Array traversal, insertion, deletion	L3	Class room + Lab Activity	1	2(CO2)
			Module-02		
10	Introduction to linked list, drawbacks of an array, representation of linked list in memory, algorithm of traversing a linked list	L2, L3	Class room + Lab Activity	1	2(CO2)
11	Algorithm to Insert into a sorted linked list, Example of Insertion	L3	Class room + Lab Activity	1	1(CO2)
12	Algorithms to 1. delete a node after a given node. 2 delete the node with a given item of information. Example of deletion.	L3	Class room + Lab Activity	1	4(CO2)
13	Introduction to header linked list, its types, properties. Algorithm for 1. Traversing a circular linked list 2. Searching a circular linked list 3. Deletion in circular linked	L3	Class room + Lab Activity	1	3(CO2)

	list , Introduction to two way lists and two way header list				
14	Operations on two way lists. Algorithm for 1. Traversing 2. searching 3. deletion 4. insertion on a two list. Concept of structure within structure, typedef	L3	Class room + Lab Activity	1	3(CO2)
			Module-03		
15	Introduction to stacks, array representation of stacks: algorithm to push and pop an element from a stack with example, Linked list representation of stacks: algorithm to push and pop the element in a linked stack	L2, L3	Class room + Lab Activity	1	3(CO2)
16	Applications of Stacks: Reversing a list, Polish notation and its types, Algorithm for converting infix to postfix expression with example, Algorithm for evaluating postfix expression with example, Example of recursion.	L3	Class room + Lab Activity	1	4(CO2)
17	Introduction to queues, representation of a queue as an array, procedure to insert and delete the item from a queue, Linked representation of a queue, comparison of array representation of a queue with linked list	L2, L3	Class room + Lab Activity	1	4(CO2)
18	Algorithm for operations on linked queue: Insertion, deletion. Deques, types of deques, example of deque as a circular array, Example of deque as a linked list	L3	Class room + Lab Activity	1	4(CO2)
19	Introduction to priority queues, One way list representation of a Priority Queue, Algorithms to delete and insert the elements from the priority queues, Array representation of a priority queue and its example, Application of queues: simulation	L2,L3	Class room + Lab Activity	1	4(CO2)
			Module-04		
20	Introduction to trees, Binary trees, its terminology, complete binary tree, extended binary tree or 2- tree, Linked representation of a binary tree and its example.	L2,L3	Class room	1	2(CO3)

21	Sequential representation of a binary tree and its example. Traversing binary trees: Preorder, inorder, postorder. Examples.	L2,L3	Class room	1	2(CO3)
22	Preorder Traversal algorithm using stacks and example	L3	Class room	1	1(CO3)
23	Inorder Traversal algorithm using stacks and example	L3	Class room	1	1(CO3)
24	Postorder Traversal algorithm using stacks and example	L3	Class room	1	1(CO3)
25	Binary Search Trees, Searching and Inserting in BST algorithm, Appilcation of BST	L2,L3	Class room + Flipped Class	1	2(CO3)
26	Deletion algorithm of BST with different cases, example of deletion in BST	L3	Class room	1	2(CO3)
27	Introduction to AVL search trees, Insertion algorithm, LL Rotation, RR rotation with example	L2	Class room + Flipped Class	1	1(CO3)
28	LR and RL rotations with examples, Deletion in an AVL search tree, R0, R1, R-1, L0, L1, L-1 rotations with examples	L2	Class room + Flipped Class	1	1(CO3)
29	Introduction to m-way search tree, Searching and insertion in m-way search tree with example	L2,L3	Class room	1	2(CO3)
30	Deletion in an m-way search tree with example	L2,L3	Class room	1	1(CO3)
31	Introduction to B-Trees, Searching, Insertion and Deletion algorithms, examples	L2,L3	Class room+Lab Activity	1	3(CO3)
32	Introduction to heap, insertion, deletion and heapsort algorithms, example of heap	L2,L3	Class room + Flipped Class	1	3(CO3)
33	Example of Binary Search Tree, AVL search tree, Heap	L3	Flipped Class	1	3(CO3)
			Module-05		
34	Introduction to Graphs, Types with example	L2	Class room	1	2(CO3)
35	Linked representation of a graph, Operations on graph: searching	L2,L3	Class room + Flipped Class	1	2(CO3)
36	Algorithms to insert a node and edge into a graph with examples	L3	Class room+Lab Activity	1	1.5(CO3)
37	Algorithms to delete a node and edge from a graph with examples	L3	Class room+Lab Activity	1	1.5(CO3)

38	Algorithms for Breadth-First and Depth-First searches with examples	L3	Class room+Lab Activity	1	3(CO3)
			Module-06		
39	Algorithms of Linear Search, Binary Search	L3	Lab Activity	1	5(CO4)
40	Algorithms of Bubble sort, Insertion sort, with examples	L3	Class room + Lab Activity	1	5(CO4)
41	Algorithm of Selection sort, Quick Sort with examples	L3	Class room + Lab Activity	1	5(CO4)
42	Algorithms of Merge sort and Radix sort with examples	L3	Class room + Lab Activity	1	5(CO4)

Text Books:

- 1. Data Structure Using C. Balagurusamy, Tata McGraw-Hill.
- 2. Data Structures, Adapted by: Pai G. Schaum"s Outlines.
- 3. Data Structures Using C. Tenenbaum A. M., Langsam Y. & Augenstein M. J., Pearson.

Reference Books:

- 1. Data Structures Using C. ISRD Group, 2nd Ed. Tata McGraw-Hill.
- 2. Data Structures using C. Thareja R., Oxford.
- 3. Data Structures using C and C++. Shukla R. K., Wiley India.
- 4. Data Structures: A Pseudocode Approach with C. Gilberg R. F. & Forouzan, 2nd Ed. CENGAGE Learning.
- 5. Introduction to Data Structure and Its Applications. Tremblay J. P. & Sorenson P. G.
- 6. C & Data Structures. Deshpande P. S. & Kakde O. G., DreamTech press.

Video Link:

- 1 https://nptel.ac.in/courses/106/102/106102064/
- 2 https://www.youtube.com/watch?v=RBSGKIAvoiM

Other study material:

- 1. Hand Written Notes
- 2. PowerPoint Slides

University Evaluation Scheme

Sr. No.	Assessment	Weightage (%)	Modification in Weightage (%) By Teacher
1.	Mid Term Examination – I and II	35 (17.5 % Each)	30
2.	Quiz (Best 2 out of 3)	15 (5 % Each)	10
3.	S & GD/Active Learning & Class Assignment	10	20
4.	Assignment	5	5
5.	Attendance	5	5
6.	End Term Examination	30	30

Course Evaluation Scheme with Attainment Measurement

Sr. No.	Topics (smallest unit	LEVEL	EVALUATION METHOD and Marks Bifurcation											Relevant CO(%)			
	for which		FC	ORM	1AT		E		SL	JM	MA	TIVE		-			
	Taxonomy has been used)		A	D	Т	Ρ		Q	Т	Ρ	0	MT	ET				
														1	2	3	4
1	Sr. 15- 18(Class Assignment - 01)	L3	10		L						1				5		
2	Sr. 21- 24(Class Assignment - 02)	L3	10												١	5	
3	Sr. No. 38-42 (Home Assignment)	L3	10	1)						10
4	Sr. No. 17 & 19(Discussion)	L3		5									1	1	5		
5	Sr. No. 32 & 33 (Discussion)	L3		5												5	
6	Sr. 1-7(Q-01)	L1						10						2			
7	Sr.8-14 (Q-02)	L1						10						1	5		
8	Sr. 34-37(Q- 03)	L1						10								5	
9	Sr. 1-14(MT-1)	L1, L2 & L3										25		3	5		
10	Sr. 15-28(MT- 2)	L1, L2 & L3										25			5	7	

11	Sr. 1- 42(ET)	L1, L2 & L3									50	4	10	13	10
			30	10			20			50	50	10	35	35	20
				25	5%			7	5%)					

Distribution of EVALUATIONS including schedules

FORMATIVE (Total weightage)

- 1. Class Assignments (weightage/marks)/ Case Study/Discussions periodicity (continuous/end of term)
 - (a) Assignment(10%)- Two Class Assignments: ACO2(5%), ACO3(5%)
 - (b) Discussion(10%)- DCO2(5%), DCO3(5%)
- 2. Assignment (weightage) Home Assignment-ACO4(5%)

SUMMATIVE (Total weightage)

1. Quizzes

Best 2 out of 3(10%)

Q1(Sr. 1-7)- QCO1 Q2(Sr. 8-14)-QCO2 Q3(Sr. 34-37)-QCO3

- 2. CLASS TESTS MT-1(Sr. 1-14)(15%)- CO-01, CO-02 MT-2(Sr. 15-28)(15%)-CO-02, CO-03
- 3. END TERM EXAM Sr. 1-42(30%)

Expected Average Attainment of the Class:

Average Attainment of CO1

Course Outco	mes			CO1					
Assessmer	nt	Forr	mative	Summative					
		Tool	Avg. %	Tool	Avg. %	ET			
1									
2									
3									

Average Attainment of CO2

Course Outcomes	CO2			
Assessment	Formative	Summative		

	Tool	Avg. %	Tool	Avg. %	ET
1					
2					
3					

Course Outcome	CO1	CO2	CO3	 COi	Total Avg. Outcome
Average Attainment					

Total Average Attainment

$$W = rac{\sum_{i=1}^n w_i ext{ constraints}}{\sum_{i=1}^n w_i}$$

Course Plan Submission

- Faculty member has to fill the course plan (except Average Attainment) before the start of semester and submit a copy to Head of Department and Dean SOE for the Approval.
- On the completion of semester evaluation, course plan has to submit with the Total average outcomes to the Head of Department and Dean SOE.
- Feedback from the subject Teacher.

Name of Subject Teacher

Head of Department

Dean