
Subject : Data Structures

Subject_code : CS-2201

Course : B.Tech.(III Sem.)

By
Poonam Saini

Department of Computer Science & Engineering
Sir Padampat Singhania University

Udaipur

1

Course Objectives

 To impart a thorough understanding of linear data
structures such as stacks, queues and their
applications.

 To impart a thorough understanding of non-linear
data structures such as trees, graphs and their
applications.

 To impart familiarity with various sorting, searching
and hashing techniques and their performance
comparison.

2

Course Outcomes

 Summarize different categories of data Structures

 Identify different parameters to analyze the performance of an
algorithm.

 Explain the significance of dynamic memory management
Techniques

 Design algorithms to perform operations with Linear and
Nonlinear data structures

 Illustrate various technique to for searching, Sorting and hashing

 Choose appropriate data structures to solve real world problems
efficiently.

3

Recommended Text/Reference Books

1. Data Structures Using C. Tenenbaum A. M., Langsam Y. & Augenstein M. J., Pearson.

2. Data Structures using C. Thareja R., Oxford.

3. Data Structures using C and C++. Shukla R. K., Wiley – India.

4. Data Structures: A Pseudocode Approach with C. Gilberg R. F. & Forouzan, 2nd Ed. CENGAGE

Learning.

5. Introduction to Data Structure and Its Applications. Tremblay J. P. & Sorenson P. G.

6. C & Data Structures. Deshpande P. S. & Kakde O. G., DreamTech press.

7. Data Structure Using C. Balagurusamy, Tata McGraw-Hill.

8. Data Structures Using C. ISRD Group, 2nd Ed. Tata McGraw-Hill.

9. Data Structures, Adapted by: Pai G. Schaum‟s Outlines.

4

Module 01

Introduction

to

Data Structures

5

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This presentation is released under Creative Commons-A6ribute,on 4.0 License. You are free to use,
distribute and modify it ,
including for commercial purposes, provided you acknowledge the source.

https://creativecommons.org/licenses/by-sa/4.0/

Introduction

 Data

It is a value or a set of values of different types called data type
like string, integer etc.

 Structure

It is a way of organizing the information so that it becomes
easy to use or it is a set of rules that hold the data together.

 Data Structure

It is an aggregation of atomic and composite data types into a

set with defined relationship.

Data Structure

 A computer is a machine that manipulates data.

 The prime aim of data structure includes:

- To study how data is organized in a

computer

- How it is manipulated

- How it is retrieved

- How it can be utilized, resulting in more

efficient programs.

What is a Data Structure ?

 In computer science, a data structure is a particular way

of storing and organizing data in a computer so that it

can be used efficiently.

 Data may be organized in many different ways, the

logical or mathematical model of a particular

organization of data in memory or on disk is called

Data Structure.

 Algorithms are used for manipulation of data.

Need of a Data Structure

 To solve the complex requirements in efficient way.

 Provide fastest solution of human requirements.

 Provide efficient solution of complex problem.

A data structure helps in understanding: The relationship of

one data element with the other and How the data should

be organized within the memory?

Need of a Data Structure

 Therefore, a data structure helps you to

- Analyze the data

- Store that data

- Organize that data in a logical or mathematical manner.

Data Representation

 The basic unit of a data representation in a computer is a bit

which can be either 0 or 1.

 Basic data types of any language

- Integer representation

- Real No. representation

- Character representation

Data Type

 It consists of two parts, a set of data and the operations that can be

performed on the data. Data types facilitate the optimum use of memory as

well as a defined way to interpret.

- Atomic data type: It is a set of atomic data with identical properties. It has a

set of values and a set of operations that are to be performed on it. For eg.:

Values: -∞,…, -2, -1, 0, 1, 2,…..,∞

Operations: *, +, -, %, /, ++, - -

Data Type

- Composite data type: It is the opposite of atomic data

type. Composite data can be broken out into subfields

that have meaning. For eg.: Enrollement No:

18CS00001, address etc.

Abstract Data Type

 It is defined as a mathematical model of the data objects that

make up a data type as well as the functions that operate on

these objects.

 An abstract data type is a data declaration packaged together

with the operations that are meaningful for the data type.

 We know what a data type can do but how it is done is hidden

i.e. known as the concept of abstraction.

Primitive Data Type

 These are the basic data types of any language that form the

basic unit for the data structure defined by the user.

 It defines how the data will be internally represented in, stored

and retrieved from the memory.

 For eg.: int, char, float

Difference between ADT, data Type and
Data structure

 An ADT is the specification of the data type which specifies the

logical and mathematical model of the data type.

 A data type is the implementation of an abstract data type.

 Data structure refers to the collection of computer variables

that are connected in some specific manner.

Data Structure and its characteristics

The logical and mathematical model of a particular organization

of data is called a data structure. Or, it can be defined as a set of

data elements that represent the operations such as insertion,

deletion, modification and traversal of the values present in the

data elements.

In other words, data structure can also be defined as the logical or

mathematical model of a particular organization of data.

17

Data Structure and its characteristics

The main characteristics of a data structure are:

 It Contains component data items which may be atomic or

another data structure

 It also contains a set of operations on one or more of the

component items

18

19

Data Structure

 It Defines rules as to how components relate to each other and to the

structure as a whole. The choice of a particular data structure depends

on following consideration:

- It must be rich enough in structure to mirror actual

relationships of data in real world for example the

hierarchical relationship of the entities is best described

by the ― tree data structure.

- The structure should be simple enough that one

can effectively process the data when necessary.

20

Types of Data structures

The various data structures are divided into following categories:

❑ Linear data structure-

A data structure whose elements form a sequence, and every element in

structure has a unique predecessor

and a unique successor. Examples of linear data structure are:

•Arrays

•Linked Lists

•Stacks

•Queues

21

Types of Data structures

 Non-Linear data structures-

A data structure whose elements do not form a sequence. There is no unique

predecessor or unique successor. Examples of non linear data structures are

trees and graphs.

22

Linear Data Structures

 Arrays

- An array is a list of finite number of elements of same datatype.

The individual elements of an array are accessed using an index

or indices to the array. Depending on number of indices required

to access an individual element of an array, array can be

classified as:

• One-dimensional array or linear array that requires only one

index to access an individual element of an array

23

Linear Data Structures

 Arrays

• Two dimensional array that requires two indices to access an

individual element of array

• The arrays for which we need two or more indices are known as

multidimensional array.

24

Linear Data Structures

 Linked List

• Linear collection of data elements called nodes

• Each node consists of two parts; data part and pointer or

link part

• Nodes are connected by pointer links.

• The whole list is accessed via a pointer to the first node of the list

• Subsequent nodes are accessed via the link-pointer member

of the current node

25

Linear Data Structures

 Linked List

•Link pointer in the last node is set to null to mark the list‘s end

– Use a linked list instead of an array when You have an

unpredictable number of data elements (dynamic memory

allocation possible)

• Your list needs to be sorted quickly

26

Linear Data Structures

Types of linked lists:

➢ Singly linked list

• Begins with a pointer to the first node

• Terminates with a null pointer

• Only traversed in one direction

➢ Circular, singly linked List

• Pointer in the last node points back to the first node

27

Linear Data Structures

➢ Doubly linked list

•Two ―start pointers‖ – first element and last

element

• Each node has a forward pointer and a backward
pointer

• Allows traversals both forwards and backwards

28

Linear Data Structures

➢ Circular, doubly linked list

• Forward pointer of the last node points to the first
node and backward pointer of the first node points to
the last node

➢ Header Linked List

• Linked list contains a header node that contains
information regarding complete linked list.

29

Linear Data Structures

 Stack

A stack, also called last-in-first-out (LIFO) system,
is a linear list in which insertions (push operation) and
deletions (pop operations) can take place only at one
end, called the

top of stack

. Similar to a pile of dishes

30

Linear Data Structures

 Stack

– Bottom of stack indicated by a link member to NULL.

– Constrained version of a linked list

•The two operations on stack are:

push- Adds a new node to the top of the stack

pop – Removes a node from the top

– Stores the popped value

– Returns true if pop was successful

31

Linear Data Structures

❑ Queues

A queue, also called a First-in-First-out (FIFO) system, is
a linear list in which insertions can take place at one
end of the list, called the

Rear: of the list and deletions can take place only from
other end , called the

Front: of the list.

•Similar to a supermarket checkout line

•Insert and remove operations

32

Non-Linear Data Structures

 Tree

A tree is a non-linear data structure that represents a hierarchical

relationship between various elements. The top node of a tree is called

the root node and each subsequent node is called the child node of

the root. Each node can have one or more than one child nodes. A tree

that can have any number of child nodes is called a general tree. If there is

an maximum number N of successors for a node in a tree, then the tree

is called an N-ary tree. In particular a binary (2-ary) tree is a tree in

which each node has either 0, 1, or 2 successors.

33

Non-Linear Data Structures

➢ Binary trees

– Binary tree can be empty without any node whereas a general tree cannot

be empty.

– All nodes contain two links

- None, one, or both of which may be NULL

– The root node is the first node in a tree.

– Each link in the root node refers to a child

– A node with no children is called a leaf node

34

Non-Linear Data Structures

➢ Binary search tree

– A type of binary tree

– Values in left subtree less than parent

– Values in right subtree greater than parent

– Facilitates duplicate elimination

– Fast searches, maximum of log n comparisons

35

Non-Linear Data Structures

 Graph

A graph, G , is an ordered set (V,E) where V represent set
of elements called nodes or vertices in graph terminology
and E represent the edges between these elements. This
data structure is used to represent relationship between
pairs of elements which are not necessarily hierarchical in
nature. Usually there is no distinguished ‘first' or `last'
nodes. Graph may or may not have cycles

36

Non-Linear Data Structures

Types of Graphs

1. Connected Graph: A path exists between any two vertices of

the graphs.

2. Complete Graph: Every node is connected with every other

node in the graph.

3. Weighted Graph: Each edge is assigned a number.

4. Directed Graph: The direction of the edges indicate the path

between vertices.

5. Undirected Graph: The direction of edges are not indicated.

37

Characteristics of Data Structures

38

Operations on Data Structures

1. Traversing: Accessing each record exactly once so that

certain items in the record may be processed.

2. Searching: Finding the location of the record with a given key

value or finding the locations of all records which satisfy one or

more conditions.

3. Insertion: Adding a new record to the structure.

4. Deletion: Removing a record from the structure.

39

Operations That are used in Special Situations
on Data Structures

1. Sorting: Arranging the records in some logical order.

2. Merging: Combining the records in two different sorted files

into a single sorted file.

40

41

Refinement Stages to solve a complex
problem

 The best approach to solve a complex problem is to divide it

into smaller parts such that each part becomes an

independent module which is easy to manage.

 Different problems have different no. of refinement stages, but

in general there are four levels of refinement processes.

Refinement Stages to solve a complex
problem

1. Conceptual or abstract Level

At this level, we decide how the data is related to each other

and what operations are needed.

2. Algorithmic or Data structure level

At this level, we decide, what kind of data structure will be

required to solve the problem. For eg. Contiguous list for

retrieving any element or stacks for evaluation of a prefix/ postfix

notation.

Refinement Stages to solve a complex
problem

3. Programming or Implementation level

At this level, we decide the details of how the data structures

will be represented in the computer memory. For eg. We decide

whether the linked lists will be implemented with pointers or with

the cursors in an array.

4. Application level

This level settles all the details required for particular application

such as names for variables or special requirements for the

operations imposed by applications.

What is an algorithm?

 An algorithm is a finite set of instructions that takes
some raw data as input and transforms it into
refined data.

 An algorithm is a well-defined list of steps for
solving computational problem.

45

Characteristics of an algorithm

 Initially an input is provided to an algorithm before it
begins.

 The processing rules specified in the algorithm must be
precise and unambiguous and lead to a specific action.

 Processing should be done in finite time.

 Repetition of steps should be finite.

 An algorithm must have one or more outputs.

46

47

Efficiency of an algorithm

 Efficiency of an algorithm can be analyzed by finding
the memory space and running time required for an
algorithm.

 An efficient algorithm takes less memory space and
running time and produce correct results.

48

Different Approaches for Designing an

Algorithm

 Top-Down Approach

It starts by identifying the major components of the
system or program decomposing them into their low-level
components and iterating until the desired level of
module complexity is achieved.

 Bottom-up Approach

It starts with designing the most basic or primitive
components and proceeds to higher-level components.

49

Comparison of both the Approaches

 In case of Top-Down Approach

- No emphasis is given on the identification of communication or
on reusability of components.

- Little attention is paid to data.

- No information hiding.

 Bottom-up Approach

- More attention is paid to data

- More emphasis on communication or on reusability of
components.

- It follows information hiding.

50

Analysis of Algorithms

Analysis of an algorithm requires two main
considerations:

- Time Complexity

- Space Complexity

51

Complexity of Algorithm

 Efficiency or complexity of an algorithm is stated as a

function relating the length to the number of steps (time

complexity) or storage location (space complexity).

f(n)

 In simple words complexity of an algorithm is the time and

space it uses.

52

Time Complexity

 Time Complexity: It is the running time of the
program as a function of size of input. While
measuring the time complexity of an algorithm, we
concentrate on developing only the frequency count
for all key statements.

Algorithm A: a=a+1

Frequency count of Algorithm A is 1

53

Time Complexity

Algorithm B: for x=1 to n step 1

a=a+1

Loop

Frequency count of Algorithm B is n

Algorithm C: for x=1 to n step 1

for y=1 to n step 1

a=a+1

Loop

Frequency count of Algorithm C is n2 54

Time Complexity

If an algorithm performs f(n) basic operations where
n is the size of the input then total running time will
be

C f(n)

Where C is a constant that depends upon the
algorithm.

55

Space Complexity

 It is the amount of Computer memory required
during the program execution, as a function of
input size.

 The space needed by the program is the sum of the
following components:

- Fixed space requirements: It includes instruction
space for simple variables, fixed size structured
variables and constants.

56

Space Complexity

- Variable space requirement: It consists of space
needed by structured variables whose size depends
on particular instance of variables. It also includes
the additional space required when the function
uses recursion.

57

Big-O Notation

➢ It helps to determine the time as well as space complexity of

the algorithm. We are not concerned with an exact

measurement of an algorithm’s efficiency but are concerned

with its general order of magnitude.

➢ f(n) represents the number of statements executed for n

elements of data. We are not concerned about the complete

measure of efficiency but with only the factor that determines

the magnitude.

➢ This factor is the big-O as an in “on the order of”.

58

Big-O Notation

➢ It is expressed as O(n) i.e. on the order of n.

➢ The Big-O notation can be derived from f(n) using the following

steps:

1. In each term, set the coefficient of the term to 1.

2. Keep the largest term in the function and discard the others.

Terms are ranked from lowest to highest as follows:

log2n, n, nlog2n, n2 , n3 ,-----, nk ,2n ,n!

59

Big-O Notation

➢ For eg.: Calculate big-O notation for

f(n) =n(n+1)/2

Sol. f(n)=1/2 n2 + 1/2 n

= n2 + n

= n2

Therefore, big-O notation is stated as

O(f(n)) = O(n2)

60

Asymptotic Notation

 Helps to compare algorithms.

 Suppose we are considering two algorithms, A and B, for

solving a given problem. Furthermore, let us say that we have

done a careful analysis of the running times of each of the

algorithms and determined them to be Ta(n) and

Tb(n),respectively, where n is a measure of the problem size.

Then it should be a fairly simple matter to compare the two

functions and to determine which algorithm is the best!

61

Types of Analysis

 Types of Analysis

- Worst case running time

– Average case running time

– Best case running time

62

Worst case Running Time

 The behavior of the algorithm with respect to the worst possible

case of the input instance.

 The worst-case running time of an algorithm is an upper bound

on the running time for any input. Knowing it gives us a

guarantee that the item does not occur in data.

 There is no need to make an educated guess about the

running time.

63

Average case Running Time

 The expected behavior when the input is randomly drawn from a

given distribution.

 The average-case running time of an algorithm is an estimate of the

running time for an "average" input.

 Computation of average-case running time entails“ knowing all

possible input sequences, the probability distribution of

occurrence of the sequences, and the running times for the

individual sequences”.

 Often it is assumed that all inputs of a given size are equally likely

64

Best case Running time

 The behavior of the algorithm when input is in already in

order.

 For example in sorting, if elements are already sorted for

a specific algorithm.

 The best case running time rarely occurs in practice

comparatively with the first and second case.

65

Time-Space Tradeoff

 In computer science, a space-time or time-memory tradeoff occurs.

 It is a way of solving a problem or calculation in less time by using more

storage space (or memory), or by solving a problem in very little space by

spending a long time.

 So if your problem is taking a long time but not much memory, a space-

time tradeoff would let you use more memory and solve the problem more

quickly.

 Or, if it could be solved very quickly but requires more memory than, you

can try to spend more time solving the problem in the limited memory.

66

Time Complexity

67

int add(int num1, int num2)
{

int total = num1 + num2;
return total;

};

Steps

1.Looking up num1

2.Looking up num2

3.Assigning the sum of the two numbers to the variable total

4.Returning total.
NOTE: Their time complexity is O(1) or constant time because the
operations only happen once, and they do not depend on the size
of the input as they run.

O(1 + 1 + 1 + 1) = O(4), which we will then simplify to O(1) as
we strip our constants and identify our highest-order term.

Big O Notation

68

Data
Structure

Insert Retrieve

Array O(1)O(1) O(1)O(1)

Linked List
At Head: O(1)O(1)
At Tail: O(n)O(n)

O(n)O(n)

Binary
Search

O(n)O(n) O(n)O(n)

Dynamic
Array

O(1)O(1) O(1)O(1)

Stack O(1)O(1) O(1)O(1)

Sorting Algorithm
Worst-case

scenario
Average Case

Best-case
scenario

Bubble Sort O(n^2)O(n​2​​) O(n^2)O(n​2​​) O(n)O(n)

Insertion Sort O(n^2)O(n​2​​) O(n^2)O(n​2​​) O(n)O(n)

Selection Sort O(n^2)O(n​2​​) O(n^2)O(n​2​​) O(n^2)O(n​2​​)

Quick Sort O(n^2)O(n​2​​) O(n log n)O(nlogn) O(n log n)O(nlogn)

Merge Sort O(n log n)O(nlogn) O(n log n)O(nlogn) O(n log n)O(nlogn)

Heap sort O(n log n)O(nlogn) O(n log n)O(nlogn) O(n log n)O(nlogn)

https://www.educative.io/blog/data-structures-arrays-javascript-tutorial
https://www.educative.io/blog/data-structures-linked-list-java-tutorial
https://www.educative.io/blog/data-structures-stack-queue-java-tutorial
https://www.educative.io/blog/algorithms-101-merge-sort-quicksort
https://www.educative.io/blog/algorithms-101-merge-sort-quicksort

69

Arrays

70

Introduction

 An array is a finite collection of similar elements stored in

adjacent memory locations.

 An array with n number of elements is referenced using an

index that ranges from 0 to n-1.

 The lowest index of an array is called the lower bound(LR).

 The highest index of an array is called the upper

bound(UP).

 The number of elements in an array is called its range.

LB=0

UB=n-1

Size of an array= UB-LB+1 = n – 1 – 0 + 1 =n
71

Array Declaration & Initialization in C

 int age[20]

 int age[5]=:8,10,5,15,20};

 char name[]=“SPSU”;

 char name[]={‘S’,’P’,’S’,’U’};

72

Linear Arrays

73

Representation of Linear Arrays in Memory

74

Representation of Linear Arrays in Memory

75

Example:

int a[5];

Given Base(a) = 100, LB=0, w=4

Calculate the address of the a[2]

Solution:

Loc(a[2]) = 100 + 4 * (2-0)

= 108

Representation of Linear Arrays in Memory

76

Array Operations

77

 Array Traversal

Array Operations

 Insertion

Adding an Element in the:

➢ Beginning

➢ Middle

➢ End

Array Operations

 Insertion

Array Operations

 Insertion: Adding an Element in the End

Array Operations

 Insertion: Adding an Element in the End

Array Operations

 Insertion Algorithm:

83

Array Operations

 Deletion

Deleting an Element from the:

➢ Beginning

➢ Middle

➢ End

Array Operations

 Deletion: Deleting an Element from the end

Array Operations

 Deletion: Deleting an Element from the middle

….

Array Operations

 Deletion Algorithm:

Two Dimensional Arrays

Two Dimensional Arrays

Two Dimensional Arrays: Row and Column

Major Order

Two Dimensional Arrays: Calculating the

Address of the Element of a 2-D Array

w→ word Size
m→ No. of rows
n→ No. of Columns

Two Dimensional Arrays: Calculating the

Address of the Element of a 2-D Array Example

Searching

93

Searching

• Searching refers to the operation of finding the location of any

item in the array.

• The search is said to be successful if the item is found;

• Otherwise, it is unsuccessful.

Linear Search

• Compare the given item i.e., to be searched with each element

of the array one by one.

• This method traverses the data sequentially and is called linear

or sequential search.

Algorithm for Linear Search:

Linear(A,N,ITEM,LOC)
A→ A Linear array of size N

N→ Size of the array A

ITEM→ item to be searched

LOC→ Location of the element

Found→ Boolean variable

Step 1: [Initialization]

Found:= FALSE, K:=0

Step 2: [Read the value i.e., to be searched]

Read ITEM

Step 3: [Comparing each element with the ITEM]

Repeat while K<N

If A[K] = ITEM

FOUND:= TRUE

goto STEP 4

else

K:= K+1

Step 4: [Checking for the value of FOUND]

If Found:= TRUE

Write “Record Found”

else

Write “Record Not Found”

Step 5: [Finished]

Exit

Algorithm for Binary Search:

Binary(A,LB,UB,ITEM,LOC)
A→ A is a sorted array of size N

LB→ Lower Bound

UB→ Upper Bound

ITEM→ item to be searched

LOC→ Location of the element

Step 1: [Initialization]

Set BEG:=LB, END:=UB,

MID:=INT(BEG+END)/2

Step 2: Repeat Step 3 and 4

while BEG<=END and A[MID] ≠ ITEM

Step 3: If ITEM < A[MID] then

Set END:=MID-1

else

Set BEG:=MID+1

[End of If structure]

Step 4: Set MID:=INT((BEG+END)/2)

[End of Step 2 Loop]

Step 5: If A[MID]=ITEM then

Set LOC:=MID

else

Set LOC:=NULL

[End of If structure]

Step 5: [Finished]

Exit

