Linked List

Introduction
List

t IS a term used to refer to a linear collection of data items.

A list can be implemented either by using arrays or linked list.
1 Drawbacks of Arrays

= A large block of memory is occupied by an array which may not
be in use and It is difficult to increase the size of an array.

A contiguous block of memory is required

Introduction to Linked List

Linked List

= Linked lists are a linear collection of data elements that stores a
group of values of the same data type.

= They are also known as dynamic data structures because
successive elements are not stored at contiguous memory
locations.

= NODE

Data MNext

Data FPointer 10 pointer

The data elements in a linked list are nodes, each ot which contains
a pointer field pointing to the next node.

Linked list iIs a data structure that contains data and link field

encapsulated inanode.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to
the next node.

Next

> Data Items > Data

Next

Next
- Data Items

Items

NULL
Head data link

I]

20 28 NULL
T x

Node

As per the above lllustration, following are the important points to be considered.
- A pointer HEAD/START of the list is used to gain access to the list itself.
- Each link carries a data field(s) and a link field called next.

- a ara \ a ara [] (1() ara a
C W AT w v

« Last link carries a link as null to mark the end of the list.

Y

¥

(End of the list)

Linked List

NOTE
= A list that has no nodes is called a null list or empty list
and Is denoted by the null pointer in the variable START.

= The structure defined for single liked list iIs implemented
as:

struct node R || TGS

{

Int data;
Struct node *next;

1-

S

Uses of Linked List

The list Is not required to be contiguously present in the memory.
The node can reside any where in the memory and linked

together to make a list. This achieves optimized utilization of
space.

list size is limited to the memory size and doesn't need to be
declared in advance.

Empty node can not be present in the linked list.

We can store values of primitive types or objects in the singly
linked list.

Why use Linked List over arrays?

Array contains following limitations:

1.
2.

The size of array must be known in advance before using it in the program.

Increasing size of the array is a time taking process. It is almost impossible to
expand the size of the array at run time.

All the elements in the array need to be contiguously stored in the memory.
Inserting any element in the array needs shifting of all its predecessors.

Linked list is the data structure which can overcome all the limitations of
an array. Using linked list is useful because

1.

It allocates the memory dynamically. All the nodes of linked list are non-
contiguously stored in the memory and linked together with the help of pointers.

Sizing is no longer a problem since we do not need to define its size at the time of

declaration grows as per the program's demand and limited to the available
memory space.

Representation of Linked List in Memory

Let LIST-> Linked list INFO LINK
Two linear arrays are required in a LIST

INFO[K] = stores the info part ;
LINK[K] = stores the address of next node. 3010 6
START_ ef rc]:orlw_tains the location of the 4 | T 0

eginning of the list 5
NULL - indicates end of List. START 2 6 A 11
7 X 10

8
—9 | N 3
10 I 4
11| E /

12

Singly Linked List Operations

Basic Linked List Operations

1. Traversing a Linked List

= Processing each node of the list exactly once is
Known as traversing.

= Let LIST be a linked list in memory stored in linear
arrays INFO and LINK with START pointing to the
first element and NULL indicating the end of LIST

= PTR is pointer variable which points to the node i.e.
currently being processed.

= [INK[PTR] points to the next nodetobe

processed.

Basic Linked List Operations
Traversing a Linked List

Algorithm: STEP 4: [Set PTR to point to the next node]
Set PTR:=LINK[PTR]
[End of STEP 2 loop]
STEP 5: [Finished]
Exit

LIST: Linked list in memory
PTR: Pointer to current node
START: Pointer to first node

PROCESS: An operation i.e. to be
applied on each node.

STEP 1: [Initialize PTR]
Set PTR:=START

STEP 2: [Repeat Step 3 and 4]
while PTR# NULL

STEP 3: [Apply operation on node]

Apply PROCESS to INFO[PTR]

12

Basic Linked List Operations

2. Insertion in a Linked List

(a)lnsertion at the beginning of the linked List

START

J C

AVAIL

| D

X

Basic Linked List Operations
2. Insertion in a Linked List

(a)lnsertion at the beginning of the linked List

START

1A | B | C 1D | X

START New Node

» E
»

New Node

Basic Linked List Operations
2. Insertion in a Linked List

(a)lnsertion at the beginning of the linked List

NOTE: Sometimes new data are to be inserted into a
Data structure but there is no available space. This
situation is called “"Overflow” i.e. AVAIL=NULL

The term underflow refers to a situation where one
wants to delete a data item from data structure that
is empty i.e. START=NULL

Basic Linked List Operations
2. Insertion in a Linked List

(a)lnsertion at the beginning of the linked List

Algorithm: INSFIRST(INFO, LINK, START, AVAIL, ITEM)
STEP 1: [Checking for Overflow condition]

If AVAIL=NULL then Write “Overflow” EXIT
STEP 2: [Remove first node from AVAIL List]

Set NEW:=AVAIL

AVAIL:=LINK[AVAIL]

STEP 3: [Copies new data into new node]

Set INFO[NEW].=ITEM
STEP 4: [New Node now points to the original first node]

Set LINK[NEW]:=START

STEP 5: [Change START so it points to the new node]
START.=NEW

STEP 6: EXIT

Basic Linked List Operations
2. Insertion in a Linked List

(bllnsertion after a given node

Head Next Next
» Dataltems » Data ltems
NULL
Mext
Data Items
Head Next Next
» Dataltems _______,_,__-———————'“""——:: Data Items
/I’T
NULL
Next
Data items

Basic Linked List Operations
2. Insertion in a Linked List

(bllnsertion after a given node

Head Next : Next
» Dataltems —» Data ltems
NULL
Next
Data ltems
Head Next Next Next
__» Dataltems . Dataltems __» Dataltems

—

11

NULL

Basic Linked List Operations
2. Insertion in a Linked List

(bllnsertion after a given node

Head Next : Next
» Dataltems —» Data ltems
NULL
Next
Data ltems
Head Next Next Next
__» Dataltems . Dataltems __» Dataltems

—

11

NULL

Basic Linked List Operations
2. Insertion in a Linked List

(bllnsertion after a given node

Algorithm: INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM)

NOTE: This algorithm inserts ITEM so that ITEM follows the node with
the location LOC or inserts ITEM as the first node when LOC =NULL

STEP 1: [Checking for Overflow condition]
If AVAIL=NULL then Write “Overflow” EXIT

STEP 2: [Remove first node from AVAIL List] STEP 4:)f LOC=NULL then
Set NEW:=AVAIL [Insert as first node]
AVAIL:=LINK[AVAIL] Set LINK[INEW]:=START
STEP 3: [Copies new data into new node] START:=NEW
Set INFO[NEW]:=ITEM else

[Insert after new node with location LOC]
Set LINK[NEW]:=LINK[LOC]
LINK[LOC]:=NEW

[End of if structure]

STEP 5: EXIT

Basic Linked List Operations
2. Insertion in a Linked List

(c)Inserting in r linked Li

SAVE PTR

START

[= ==
[—==

-— =
> _

Basic Linked List Operations
2. Insertion in a Linked List

(c)Inserting in r linked Li

ITEM is to be inserted between node A and B i.e.
INFO[A]<ITEM<=INFO[B]

NOTE: First find the LOC of node A.

Traverse the list using a pointer variable PTR and
comparing INFO[PTR] with ITEM at each node. While
traversing, keep track of the location of the preceding
node by using a pointer variable SAVE i.e. SAVE:=PTR

And PTR:=LINK[PTR]

Wi = I | ITEM<=INFO[START]
LOC=NULL

Basic Linked List Operations
2. Insertion in a Linked List

(c)Inserting in r linked Li

Procedure for finding the location of node A

Procedure: FINDA(INFO, LINK, START, ITEM, LOC)

This procedure finds the location LOC of the last node in a
sorted linked list such that INFO[LOC]<ITEM or set
LOC=NULL

Basic Linked List Operations
2. Insertion in a Linked List

(c)Inserting in r linked Li
Procedure: FINDA(INFO, LINK, START, ITEM, LOC)

STEP 1: [List is Empty?]

If START=NULL then Set LOC:=NULL and Return
STEP 2: [Special Case?]

If ITEM<INFO[START] then Set LOC:=NULL and Return
STEP 3: [Initialize Pointer]

Set SAVE:=START

PTR:=LINK[PTR]

STEP 4. Repeat STEP 5 and 6 while PTRZNULL
STEP 5: If ITEM<INFO[PTR] then

Set LOC:=SAVE and Return
STEP 6: Set SAVE:=PTR

PTR:=LINK[PTR]

[End of STEP 4 Loop]

STEP 7: Set LOC:=SAVE
STEP 8: Return

Basic Linked List Operations
2. Insertion in a Linked List

(c)Inserting in r linked Li

Algorithm: INSERT(INFO, LINK, START, AVAIL,ITEM)
This algorithm inserts the ITEM into a sorted linked list

STEP 1: [Use Procedure to find the location of node preceding ITEM]
Call FINDA(INFO, LINK, START, ITEM, LOC)

STEP 2: [Use Algorithm to insert ITEM after node with location LOC]
Call INSLOC(INFO, LINK, START, AVAIL, LOC, ITEM)

STEP 3: EXIT

26

Example

[0 Consider the alphabetized
list of patients in the given
Figure. Determine the
changes if “Jones” is added
to the list of patients.

[0 Solution:
Given ITEM=“Jones”
INFO=BED

Example Solution

(
Step f: gince ETkE*#H‘HEE, Eontrol sﬁaii Be trans*erred to Step 2

Step 2: Since BED[5]="Adams” Therefore BED[5]<ITEM Control shall be transferred to
Step 3
Step 3: SAVE=5 and PTR=LINK[5]=3
Step 4: Step 5 and Step 6 are repeated as follows
(a) BED[3]="Dean”"<"Jones” so SAVE=3 and PTR= LINK[3]=11
(b) BED[11]="Fields”"<"Jones” SAVE=11 and PTR=LINK[11]=8
(c) BED[8]="Green”"<“Jones” SAVE=8 and PTR=LINK[8]=1
(d) Since BED[1]="Kirk"”">"Jones” Therefore LOC=SAVE=8 and Return

(B)INSLOC(BED, LINK, START, AVAIL, LOC,ITEM)
Step 1: Since AVAILNULL Control is transferred to Step 2
Step 2: NEW=10 and AVAIL=LINK[10]=2
Step 3: BED[10]="Jones”
Step 4: LOC#NULL We have
~ LINK[10]=LINK[8]=1 and LINK[8]=NEW=10
Step 5: Exit 28

Example Solution

[0 Updated list after insertion of
“‘Jones”

Deletion from a Linked List

30

Deletion from a Linked List

Two Special Cases:
1. If the deleted Node N is the first node in the list then START will point

to Node B
2. If the deleted node N is the last node in the list then Node A will

contain NULL pointer in the LINK part.

31

(a)Deletion a Node after a Given Node
Let LIST be alist in memory.

Suppose LOC be the location of Node N in the LIST.

Let LOCP be the location of the Node preceding Node N.

When Node N is the first node then LOCP=NULL
Algorithm: DEL(INFO, LINK, START, AVAIL, LOC, LOCP)
Step 1: if LOCP=NULL Then
Set START.=LInk[START] [Deletes First Node]
else
Set LINK[LOCP]:=LINK[LOC] [Deletes Node N]
Step 2: [Return deleted node to the AVAIL list]
Set LINK[LOC]:=AVAIL and AVAIL:=LOC
Step 3: [Finished]
Exit

32

To Delete the First Node

To Delete the Node N when N is not
the First node

34

(b)Deletion a Node with a Given ITEM of

Information

NOTE: Find the LOC of Node N containing ITEM and LOCP

of the node preceding Node N.
Procedure: FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
Step 1: [Empty List?]
if START=NULL Then
Set LOC:=NULL and LOCP:=NULL and Return
[End of If Structure]
Step 2: [ITEM is first Node?]
if INFO[START] =ITEM then
Set LOC:=START and LOCP:=NULL and Return
[End of If structure]
Step 3: [Initialize Pointer]
Set SAVE:=START and PTR:=LINK[START]

Step 4: Repeat Step 5 and Step 6 while PTRZNULL
Step 5: If INFO[PTR]=ITEM then
Set LOC:=PTR and LOCP:=SAVE and Return
[End of if structure]
Step 6: [Update Pointers]
Set SAVE:=PTR and PTR:=LINK[PTR]
[End of Step 4 Loop]
Step 7: Set LOC:=NULL [Search Unsuccessful]
Step 8: Return

35

(b)Deletion a Node with a Given ITEM of
Information(Contd..)

Algorithm: DELETE(INFO, LINK, START, AVAIL, ITEM)
Step 1: [Use Procedure FINDB() to find the location of N and its preceding node]
Call FINDB(INFO, LINK, START, ITEM, LOC, LOCP)
Step 2: if LOC=NULL then
Write “Item not in list” EXxit
Step 3: [Delete Node]
if LOCP=NULL then
Set START:=LINK[START] [Deletes first node]
else
Set LINK[LOCP]:=LINK[LOC]
[End of If structure]
Step 4: [Return deleted node to the AVAIL list]
Set LINK[LOC]:=AVAIL AND AVAIL:=LOC
Step 5: [Finished]
Exit

36

[0 Consider the list of patients
in the given Figure.

[0 Delete the patient “Green”
when he is discharged.

Example Solution

0 Here ITEM="Green”, INFO=BED, START=5, AVAIL=2
O FINDB(BED, LINK, START, ITEM, LOC, LOCP)
1. Since START#NULL Control is transferred to Step 2
2. Since BEDI[5]="Adams” # “Green” Control is transferred to Step 3
3. Set SAVE=5 and PTR=LINK[5]=3
4. Step 5 and 6 are repeated as follows:
(a) BED[3]="Dean” # “Green” Therefore
SAVE=3 PTR=LINK][3]=11
(b) BED[11]="Fields” # “Green” Therefore
SAVE=11 PTR=LINK][11]=8
(c) BED[8]="Green” = “Green” Therefore
LOC=PTR=8, LOCP=SAVE=11 and Return

Example Solution(Contd..)

O DELETE(BED, LINK, START, AVAIL, ITEM)

1. Call FINDB(BED, LINK, START, ITEM, LOC, LOCP)
Hence LOC=8 and LOCP=11

2. Since LOC#NULL control is transferred to Step 3

3. Since LOCP#NULL then
LINK[11]=LINK[8]=10

4. LINK[8]=2 AND AVAIL=8

5. Exit

NOTE: The updated list has been shown in Figure

39

40

Header Linked Lists

41

Header Linked Lists

[0 A header linked list is a linked list which always contains a special node called the
header node, it is beginning of the list

[0 Types of widely used header lists:
1. A Grounded header List
It is a list where the last node contains the null pointer.

If LINK[START]=NULL That means the grounded header list is empty

42

Header Linked Lists

2. A Circular header List
It is a header list where the last node points back to the header node.

If LINK[START]=START That means the Circular header list is empty

NOTE: The term node itself refers to an ordinary node, not the header node when used
with header list. Thus the first node in a header list is the node following the header node
and location of the first node is LINK[START], not START

43

Properties of Circular Header Linked
Lists

1. The null pointer is not used and hence the pointers contain valid
addresses.

2. Every ordinary node has a predecessor so that the first node may
not require a special case.

44

Operations on Clrcular Header Linked
Lists

1. Traversing a Circular Header Linked List
Algorithm:
Step 1: [Initialize Pointers]

Set PTR:=LINK[START]
Step 2: Repeat Steps 3 and 4 while PTR#START
Step 3: Apply PROCESS to INFO[PTR]
Step 4: [Update Pointer]

Set PTR:=LINK[PTR]
[End of Step 2 Loop]

Step 5: Exit 45

Operations on Clrcular Header Linked
Lists y

2. Deletion in a Circular He

Procedure: FINDBHL(INFO, LINK,

This procedure finds the location LOC of the first node N which contains ITEM and also the location
LOCP of the node preceding N

Step 1: [Initialize Pointers]
Set SAVE:=START and PTR:=LINK[START]
Step 2: Repeat while INFO[PTRJ#ITEM and PTR#START
Set SAVE:=PTR and PTR:=LINK[PTR]
[End of Loop]
Step 3: if INFO[PTR]=ITEM then
Set LOC:=PTR and LOCP:=SAVE
else
Set LOC:=NULL and LOCP:=SAVE

fl tructurel
Ul [| Cl1 LIJ

[En

| R AW |

L
Step 4: Exit

D_

uv LUI

46

Operations on Circular Header Linked
Lists

2. Deletion in a Circular Header Linked List
Algorithm: DELLOCHL(INFO, LINK, START, AVAIL, ITEM)
Step 1. [Use Procedure to find the location of N and its preceding node]
Call FINDBHL(INFO, LINK, START, ITEM, LOC, LOCP)
Step 2: if LOC=NULL then
Write “ltem not in list”
Exit
Step 3: [Delete the node]
Set LINK[LOCP]:=LINK[LOC]
Step 4: [Return deleted node to the AVAIL list]
Set LINK[LOC]:=AVAIL and AVAIL:=LOC
Step 5: [Finished]
Exit

47

48

Two-Way Lists

49

Two-Way List

It is a linear collection of data elements called node where each node N

Is divided into three parts:

1. An information field INFO which contains the data of N

2. A pointer field FORW which contains the location of the next node in
the list.

3. A pointer field BACK which contains the location of the preceding
node in the list.

Two-Way List

 Thelist also requires two list pointer variables
» FIRST which points to the first node in the list
» LAST which points to the last node in the list.

Two-Way List

NOTE:

1. Using variable FIRST and pointer field FORW, we can traverse a two-
way list in forward direction as before.

2. Using the variable LAST and pointer field BACK, we can also traverse
the list in the backward direction.

3. Two pointer arrays FORW and BACK are required instead of one
LINK array pointer as in one way list.

4. Two list pointer variable FIRST and LAST, instead of one list pointer
START.

5. The list AVAIL of available spaces in the arrays will still be maintained

as a one-way list using FORW as the pointer field.

52

Two-Way Header List

The advantages of two-way list and a circular header list may be
combined into a two-way circular header list.

53

Operations on Two-Way List

1. Traversing:

Algorithm of traversing a linked list can be used if LIST is an ordinary
two way list.

Traversing a circular header list can be used if LIST contains a header
node.

. Searching:

Suppose we are given an ITEM of information and we want to find the
location LOC of ITEM in LIST

Algorithm: SEARCH() can be used if LIST is an ordinary two-way list.
Algorithm: SRCHHL() can be used if LIST has a header node.

54

Operations on Two-Way List

3. Deletion:

« Suppose we want to delete NODE N at a location LOC in LIST.

« BACK[LOC] and FORWI[LOC] are the locations of the nodes which
precede and follow node N

- FORW[BACK[LOC]]:=FORW[LOC]
- BACK[FORWI[LOC]]:=BACK[LOC]

55

Operations on Two-Way List

Algorithm: DEWTWL(INFO, FORW, BACK, START, AVAIL, LOC)
Step 1: [Delete node]
Set FORW[BACKJ[LOC]]:=FORWI[LOC] and BACK[FORWI[LOC]]:=BACK[LOC]
Step 2: [Return node to AVAIL list]
Set FORWI[LOC]:=AVAIL and AVAIL:=LOC
Step 3: [Finished]
Exit

56

Operations on Two-Way List

4. Insertion

Operations on Two-Way List

4. Insertion
Algorithm: INSTWL(INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM)
Step 1. [OVERFLOW?]
If AVAIL=NULL then
Write “Overflow” Exit
Step 2: [Remove node from AVAIL list and copy new data into node]
Set NEW:=AVAIL
AVAIL:=FORWI[AVAIL]
INFO[NEW]:.=ITEM

58

Operations on Two-Way List

4. Insertion
Algorithm: INSTWL(INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM)
Step 3: [Insert node into list]
Set FORWI[LOCA].=NEW
FORW[NEW].=LOCB
BACK[LOCB]:=NEW
BACK[NEW]:=LOCA
Step 4: [Finished]
Exit

59

