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Introduction

 A stack is a list of elements in which an element may be inserted
or deleted only at one end called the top of the stack also called
LIFO lists.

 Basic operations performed on stack

1. “Push” is the term used to insert element into a stack.

2. “Pop” is the term used to delete an element from a stack.

NOTE: Stacks are frequently used to indicate the order of
processing of data when certain steps of the processing must be
postponed until other conditions are fulfilled.



Array Representation of Stacks

 Each of our stack will be maintained by a linear array STACK.

 A pointer variable TOP which contains the location of the top
element.

 A variable MAXSTK which gives the maximum no. of elements
that can be held by the stack.

 The condition TOP=0 or TOP=NULL indicates that stack is empty.

XXX YYY ZZZ

1 2 3        4         5        6        7        8

TOP MAXSTK



Stack

Procedure 1: PUSH(STACK, TOP, MAXSTK, ITEM)

This procedure pushes an ITEM onto a stack.

Step 1: [Stack already filled? OVERFLOW?]

if TOP=MAXSTK, then

Print “OVERFLOW”

Return

Step 2: Set TOP:=TOP+1

Step 3: [Inserts ITEM in new TOP position]

STACK[TOP]:=ITEM

Step 4: Return



Stack

Procedure 2: POP(STACK, TOP, ITEM)

This procedure deletes the top element of STACK and assigns it
to the variable ITEM

Step 1: [Stack has an item to delete? UNDERFLOW?]

if TOP=0, then

Print “UNDERFLOW”

Return

Step 2: Set ITEM:=STACK[TOP]

Step 3: Set TOP:=TOP-1

Step 4: Return



Stack Example

CASE 1: Push ITEM:=WWW

On to the stack.

1. Since TOP=3 Control is transferred to Step 2

2. Top=3+1=4

3. STACK[TOP]=STACK[4]=WWW

4. Return

XXX YYY ZZZ

1 2 3        4         5        6        7        8

TOP MAXSTK



Stack Example

CASE 2: Pop an ITEM from the stack.

1. Since TOP=3 Control is transferred to Step 2

2. ITEM=ZZZ

3. TOP=TOP-1=2

4. Return

XXX YYY ZZZ

1 2 3        4         5        6        7        8

TOP MAXSTK
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Linked Representation of Stacks

 The linked representation of a stack, commonly termed as linked
stack i.e. a stack that is implemented using a singly linked list.

 The START pointer of the linked list behaves as the TOP pointer
variable of the stack.

 The NULL pointer of the last node in the list signals the bottom of
the stack.

XXX ZZZ      XYYY

TOP/START



Linked Representation of Stacks

 PUSH Operation

XXX ZZZ      XYYY

TOP/START

XXX ZZZ      XYYY

TOP/START

ZZZ      



Linked Representation of Stacks

 POP Operation

XXX ZZZ      XYYY

TOP/START

XXX

ZZZ      XYYY

TOP/START



Linked Representation of Stacks

 Procedure 3: PUSH_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM)

This procedure pushes an ITEM into a Linked stack.

Step 1: [Available Space?]

if AVAIL=NULL then 

Write “Overflow”

Return

Step 2: [Remove first node from AVAIL list]

Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]

Step 3: Set INFO[NEW]:=ITEM

Step 4: Set LINK[NEW]:=TOP

Step 5: Set TOP:=NEW

Step 6: Return



Linked Representation of Stacks

 Procedure 4: POP_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM)

This procedure deletes the top element of the linked stack and assigns it to the

variable ITEM 

Step 1: [Stack has an item to be removed?]

if TOP=NULL then 

Write “Underflow”

Return

Step 2: Set ITEM:=INFO[TOP]

Step 3: Set TEMP:=TOP and TOP:=LINK[TOP]

Step 4: Set LINK[TEMP]:=AVAIL and AVAIL:=TEMP

Step 5: Return



Applications of Stacks

 Reversing a list

This can be accomplished by pushing each character onto the stack as it is read.

When the line is finished , characters are popped off the stack-they come off in 

reverse order.

❑ Polish Notation

The process of writing the operators of an expression either before their operands 

or after them is called the polish notation.

The notation refers to these arithmetic expression in three forms:

1. Prefix Notation

2. Postfix Notation

3. Infix Notation



Applications of Stacks

❑ Polish Notation

1. Prefix Notation

If the operator symbols are placed before its operands, then expression is in

prefix notation.

For E.g.: A+B → +AB

2. Postfix Notation

If the operator symbols are placed after its operands, then expression is in postfix

notation.

For E.g.: A+B → AB+

3. Infix Notation

If the operator symbols are placed between its operands, then expression is in

infix notation



Examples 

Infix

A+B

(A-C)*B

A+(B*C)

(A+B)/(C-D)

(A+(B*C))/(C-(D*B))

Prefix

+AB

* - ACB

+A*BC

/+AB-CD

/+A*BC-C*DB

Postfix

AB+

AC-B*

ABC*+

AB+CD-/

ABC*+CDB*-/
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Conversion of Infix to Postfix Expression

❑ Evaluation order in which the operations are executed

✓ Brackets or Parenthesis

✓ Exponentiation

✓ Multiplication or Division

✓ Addition or Subtraction

NOTE: The operators with the same priority are evaluated from left to

right.



Algorithm to convert Infix to Postfix 
Expression

The algorithm uses a stack to temporarily hold operators and parenthesis

Algorithm 5: POLISH(Q,P)

❑ Q → Infix expression

❑ P → Equivalent postfix expression

Step 1: Push “(“ onto STACK and add “)” to end of Q

Step 2: Scan Q from left to right and repeat Step 3 to 6 for each element of

Q until the stack is empty.

Step 3: If an operand is encountered, add it to P.

Step 4: If a left parenthesis is encountered, put it on the STACK.



Algorithm to convert Infix to Postfix 
Expression

Step 5: If an operator is encountered, then :

(a) Repeatedly pop from STACK and add to P each operator

which has the same precedence as or higher precedence than

(b) Add to STACK

[End of if structure]

Step 6: If the right parenthesis is encountered then:

(a) Repeatedly pop from STACK and add to P each operator until a left parenthesis is

encountered.

(b) Remove the left parenthesis

[End of if structure]

[End of Step 2 Loop]

Step 7: Exit



Example to convert Infix to Postfix 
Expression

Transform Q into its equivalent postfix expression P.

Q: A + (B * C – (D / E ↑ F) * G) * H

Solution:

A + (  B * C – (  D  /  E  ↑  F  )  *  G  )  *  H  )
1   2  3  4  5  6   7   8   9  10 11 12  13 14 15 16 17 18 19 20



Example to convert Infix to Postfix 
Expression

A + (  B * C – (  D  /  E  ↑  F  )  *  G  )  *  H  )
1   2  3  4  5  6   7   8   9  10 11 12  13 14 15 16 17 18 19 20

Symbol Scanned
1. A
2. +
3. (
4. B
5. *
6. C
7. -
8. (
9. D
10./
11.E

Stack
(
(+
(+(
(+(
(+(*
(+(*
(+(-
(+(-(
(+(-(
(+(-(/
(+(-(/

Expression P
A
A
A
AB
AB
ABC
ABC*
ABC*
ABC*D
ABC*D
ABC*DE



Example to convert Infix to Postfix 
Expression

A + (  B * C – (  D  /  E  ↑  F  )  *  G  )  *  H  )
1   2  3  4  5  6   7   8   9  10 11 12  13 14 15 16 17 18 19 20

Symbol Scanned
12. ↑
13. F

14. )

15. *

16. G

17. )

18. *

19. H

20. )

Stack
(+(-(/ ↑

(+(-(/ ↑

(+(-
(+(-*
(+(-*
(+
(+*
(+*
-

Expression P
ABC*DE
ABC*DEF
ABC*DEF ↑ /

ABC*DEF ↑ /

ABC*DEF ↑ /G

ABC*DEF ↑ /G*-

ABC*DEF ↑ /G*-

ABC*DEF ↑ /G*-H

ABC*DEF ↑ /G*-H*+
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Evaluation of a Postfix Expression
Algorithm 5: This algorithm finds the VALUE of an arithmetic expression P written in postfix

notation

1. Add a right parenthesis “)” at the end of P

2. Scan P from left to right and repeat step 3 and 4 for each element of P until the “)”

encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator is encountered, then

(a) Remove the top two elements of STACK where A is the top element and B is the next-to-

top element.

(b) Evaluate B A

(c) Place the result of (b) back on STACK

[End of If structure]

[End of Step 2 Loop]

5. Set VALUE equal to top element on STACK

6. Exit



Evaluation of a Postfix Expression: 
Example

Symbol Scanned

1. 5

2. 6

3. 2

4. +

5. *

6. 12

7. 4

8. /

9. -

10. )

STACK

5

5 , 6

5 , 6, 2

5 , 8

40

40 , 12

40 , 12 , 4

40 , 3

37

VALUE=37

P: 5  6  2  +  *  12  4  /  -
1     2    3     4    5      6     7    8    9   10

)



Recursion
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Recursive Procedures

• If a procedure contain either a call statement to itself or a call statement to a

second procedure that may eventually result in a call statement back to the

original procedure. Then such a procedure is called a recursive procedure.

• For e.g.: The problem of factorial can be solved using a recursive procedure

• Properties of recursive procedure:

(i) There must be certain criteria called the base criteria for which the

procedure does not call itself.

(ii) Each time the procedure does call itself it must be closer to the base

criteria



Recursion: Example

• Find 4! Using recursion

(i) 4! = 4 . 3!

(ii) 3! = 3 . 2!

(iii) 2! = 2 . 1!

(iv) 1! = 1 0!

(v) 0! = 1

(vi) 1! = 1 . 1 = 1

(vii) 2! = 2 . 1 = 2

(viii) 3! = 3 . 2 = 6

(ix) 4! = 4 . 6 = 24

From Step (vi) to (ix) we back track

This type of postponed processing lends itself to the use

Of stacks.

0! = 1

1! = 1 . 0!

2! = 2 . 1!

3! = 3 . 2!

4! = 4 . 3!



Recursion: Example

Let a and b denote +ve integers. Suppose a function Q is defined recursively as follows:

0                    if a < b
Q(a,b)    =           Q(a-b, b) +1          if b ≤ a

(a) Find the value of Q(2, 3) and Q(14, 3)

(b) What does this function do ? Find Q (5861, 7)

Solution:

(a) Q(2,3) = 0 since 2<3

Q(14, 3) = Q(11, 3) + 1

= [Q (8, 3) +1 ] +1 = Q(8, 3) + 2

= [Q(5, 3) +1] + 2  = Q(5, 3) + 3

= [Q(2, 3) + 1] + 3 = Q(2, 3) + 4

= 0 + 4 = 4



Recursion: Example

Let a and b denote +ve integers. Suppose a function Q is defined recursively as follows:

0                    if a < b
Q(a,b)    =           Q(a-b, b) +1          if b ≤ a

(a) Find the value of Q(2, 3) and Q(14, 3)

(b) What does this function do ? Find Q (5861, 7)

Solution:

(b) Each time b is subtracted from a, the values of Q is increased by 1. Hence Q(a,b) finds 
the quotient when a is divisible by b. Thus, Q(5861, 7) = 837 


