
Queues

1

Introduction

 A queue is a linear list of element in which deletions can take

place only at one end called a front and insertion can take place

only at other end called the rear.

NOTE: The terms front and rear are used while describing queues in

a linked list. Queues are also called FIFO lists since the first element

in a queue will be the first element out of the queue.

Representation of Queue as an array

 QUEUE → Linear Array

 FRONT → Pointer variable contain location of the front element of
the queue.

 REAR → Pointer variable containing the location if rear element
of the queue.

 If FRONT = NULL i.e. queue is empty

FRONT: 1 AAA BBB CCC DDD

1 2 3 4 5 6 7 ….. N REAR: 4

Figure (a): Queue

Representation of Queue as an array

FRONT: 2
BBB CCC DDD

1 2 3 4 5 6 7 ….. N
REAR: 4

Figure (b): Queue after deletion

FRONT: 2
BBB CCC DDD EEE FFF

1 2 3 4 5 6 7 ….. N
REAR: 6

Figure (c): Inserting two elements

Representation of Queue as an array

FRONT: 3
CCC DDD EEE FFF

1 2 3 4 5 6 7 ….. N
REAR: 6

Figure (d): Queue after deletion

Special Case

 Suppose, we want to insert an ITEM into a queue at the time the

queue does occupy the last part of the array i.e. REAR=N

 Instead of moving the FRONT to 1 and updating REAR, we

assume that is a circular queue as earlier solution is an expensive

one .

 We reset REAR=1

QUEUE[REAR]=ITEM

Special Case

 Similarly If FRONT=N and an element is deleted. Reset

FRONT:=1

 If queue contains one element FRONT = REAR ≠ NULL

 If all the elements are deleted FRONT = REAR = NULL

Queue
Procedure 1: QINSERT(QUEUE, N, FRONT, REAR, ITEM)

This procedure inserts an element ITEM into a queue.
Step 1: [Queue already filled?]

if FRONT=1 and REAR=N or If FRONT=REAR+1, then

Print “OVERFLOW”

Return

Step 2: [Find new value of REAR]

If FRONT=NULL the

Set FRONT:=1 and REAR:=1

else if REAR=N then

Set REAR:=1

else

Set REAR:=REAR+1

[End of If structure]

Step 3: QUEUE[REAR]:=ITEM

Step 4: Return

Queue
Procedure 2: QDELETE(QUEUE, N, FRONT, REAR, ITEM)

This procedure deletes an element from a queue and assigns it
to variable ITEM.
Step 1: [Queue already empty?]

if FRONT=NULL, then

Print “UNDERFLOW”

Return

Step 2: Set ITEM:=QUEUE[FRONT]

Step 3: [Find new value of FRONT]

If FRONT=REAR the

Set FRONT:=NULL and REAR:=NULL

else if FRONT=N then

Set FRONT:=1

else

Set FRONT:=FRONT+1

[End of If structure]

Step 3: Return

Linked Representation of Queues

 A linked queue is a queue implemented as a linked list with two
pointer variables.

 FRONT and REAR pointing to the nodes which is in the front and
rear of the queue.

 The INFO field holds the elements of the queue and the LINK
field hold the pointer to the neighboring elements in the queue.

AAA CCCBBB

FRONT REAR

Fig.: Queue Q

DDD X

Linked Representation of Queues

 Insert EEE into Queue Q:

 Delete from Queue Q:

AAA CCCBBB

FRONT

DDD EEE X

REAR

CCCBBB

FRONT

DDD EEE X

REAR

Comparison of array representation
of a queue with linked queue

 Array representation of a queue suffers from the drawback of
limited queue capacity whereas linked queue is not limited in
capacity.

 Data movement is expressive whereas linked queue functions as
a linear queue and there is no need to view it as a circular for
efficient management of space.

Linked Queue
Procedure 3: LINKQ_INSERT(INFO, LINK, FRONT, REAR,
AVAIL, ITEM)

This procedure inserts an ITEM into a linked queue.
Step 1: [Available Space?]

if AVAIL=NULL, then

Print “OVERFLOW”

Return

Step 2:[Remove first node from AVAIL list]

Set NEW:=AVAIL and AVAIL:=LINK[AVAIL]

Step 3:[Copies ITEM into new node]

Set INFO[NEW]:=ITEM

LINK[NEW]:=NULL

Step 4: [If Queue is empty]

If (FRONT=NULL) then

FRONT=REAR=NEW

else

Set LINK[REAR]:=NEW and REAR:=NEW

Step 5: Return

Linked Queue
Procedure 4: LINKQ_DELETE(INFO, LINK, FRONT, REAR,
AVAIL, ITEM)

This procedure deletes front element of the linked queue and
stores it in ITEM.

Step 1: [Linked Queue empty?]

if FRONT=NULL, then

Print “UNDERFLOW”

Return

Step 2: Set TEMP:=FRONT

Step 3: ITEM:=INFO[TEMP]

Step 4: FRONT:=LINK[TEMP]

Step 5: LINK[TEMP]:=AVAIL and AVAIL:=TEMP

Step 5: Return

15

DEQUES
(Double Ended Queues)

16

DEQUES

 It is a linear list in which elements can be added or removed at

either end but not in the middle.

NOTE:

 There are various ways of representing a deque in a computer.

Assume our deque is maintained by a circular array DEQUE with

the pointers LEFT and RIGHT.

 Circular means DEQUE[1] comes after DEQUE[N] in the array.

 Example: N=8

AAA BBB CCC DDD

1 2 3 4 5 6 7 8

LEFT: 4
RIGHT: 7

DEQUES

 Example: N=8

YYY ZZZ WWW XXX

1 2 3 4 5 6 7 8

LEFT: 7
RIGHT: 2

Types of variations of DEQUE

1. Input-Restricted Deque: It is a deque which allows insertions at

only one end of the list but deletion at both ends of the list.

2. Output-Restricted Deque: It is a deque which allows deletion at

only one end of the list but insertion at both ends of the list.

DEQUE Example

Consider the following deque of characters where DEQUE is a

circular array which is allocated six memory cells

LEFT=2, RIGHT=4

DEQUE: __, A, C, D, __, __

Describe the deque while the following operations take place

(a) F is added to the right of the deque

(b) Two letter on the right are deleted

(c) K, L, M are added to the left of the deque

(d) One letter on the left is deleted

(e) R is added to the left of the deque

(f) S is added to the right of the deque

(g) T is added to the right of the deque.

DEQUE Example

Solution:

LEFT=2, RIGHT=4

DEQUE: __, A, C, D, __, __

(a) F is added to the right of the deque

DEQUE: __, A, C, D, F, __

LEFT=2, RIGHT=5

(b) Two letter on the right are deleted

DEQUE: __, A, C, __, __, __

LEFT=2, RIGHT=3

(c) K, L, M are added to the left of the deque

DEQUE: K, A, C, __, M, L

LEFT=5, RIGHT=3

DEQUE Example

Solution:

(d) One letter on the left is deleted

DEQUE: K, A, C, __, __, L

LEFT=6, RIGHT=3

(e) R is added to the left of the deque

DEQUE: K, A, C, __, R, L

LEFT=5, RIGHT=3

(f) S is added to the right of the deque

DEQUE: K, A, C, S, M, L

LEFT=5, RIGHT=4

(g)T is added to the right of the deque.

Since LEFT=RIGHT+1, the array is full and hence T can not be added to the

deque i.e. overflow has occurred.

Priority Queue

A priority queue is a collection of elements such that order in which

elements are deleted and processed comes from the following rules:

1. An element of higher priority is processed before any element of

lower priority.

2. Two elements with the same priority are processed according to

the order in which they are added to the queue.

A prototype a priority queue is a timesharing system.

One Way List Representationof a
Priority Queue

A priority queue can be maintained in memory by means one-way

list as follows:

(a) Each node in the list contain three items of information: An info

field INFO, a priority no. PRN and a link no. LINK.

(b) A node X precedes a node Y in the list

(i) When X has higher priority than Y or

(ii) When both have the same priority but X was added to list

before Y

This means that the order in the one-way list corresponds to the

order of the priority queue.

One Way List Representationof a
Priority Queue

Algorithm: To delete and process the first element in a priority

queue which appears in memory as a one-way list.

Step 1: Set ITEM:=INFO[START]

Step 2: Delete first node from the list

Step 3: Process ITEM

Step 4: Exit

One Way List Representation of a
Priority Queue

Algorithm: To add an ITEM with priority number N to a priority

queue which is maintained in memory as a one-way list

(a) Traverse the one-way list until finding a node X whose priority no.

exceeds N. Insert ITEM in front of node X.

(b) If no such node is found, insert ITEM as the last element of the

list.

Applications of Queues

Simulation: It is the use of one system to imitate the behavior of

another system. Simulation are often used when it would be too

expensive or dangerous to experiment with the real system.

Types of Simulation:

 Physical Simulation

 Mathematical simulation

 Computer Simulation

Applications of Queues

 Physical Simulation such as wind tunnels used to experiment with designs

for car bodies and flight simulators used to train airline pilots.

 Mathematical simulation are systems of equations used to describe some

systems.

 Computer Simulations use the steps of a program to imitate the behavior of

the system under study.

In computer simulation

-Objects being studied are represented as Data Structures.

-Actions being studies are represented as operations on data structures.

-Rules describing these actions are translated into computer algorithms.

Example: Simulation of an airport

Airport wit only one runway

Two queues of landing and takeoff. Landing queue has higher priority than

takeoff.

