
Subject : Data Structures 

Subject_code : CS-2201

Course : B.Tech.(III Sem.)

By
Poonam Saini

Department of Computer Science & Engineering
Sir Padampat Singhania University

Udaipur

1



Graphs

2

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This presentation is released under Creative Commons-A6ribute,on 4.0 License. You are free to use, 
distribute and modify it ,
including for commercial purposes, provided you acknowledge the source.

https://creativecommons.org/licenses/by-sa/4.0/


Introduction

 A graph G consists of two things:

▪ A set V of elements called nodes/vertices

▪ A set E of edges such that edge e in E is
identified with a unique pair [u,v] of nodes in
V denoted by

e=[u,v] or G=(V,E)

Suppose e=[u,v], then u and v are called the
endpoints of e and are said to be adjacent
nodes or neighbours.



Graphs

 Degree of a Node

deg(u), is the no. of edges containing u.

If deg(u)=0 i.e. u does not belong to any edge

then u is called the isolated node.

 Path P from u to v

Path P of length n from node u to v is defined as

a sequence of n+1 nodes.

P=(v0, v1, v2,-----, Vn)

Such that u=v0 and v=vn If v0=vn then P is said

to be closed.



Graphs

 Cycle

A cycle is a closed simple path with length 3 or

more. A cycle of length k is called a k-cycle.



Prepositions

 Connected Graph

A graph G is said to be a connected graph if

there is a path between any two of its nodes.

 Complete Graph

A graph G is said to be a complete if every node

u in G is adjacent to every other node v in G. A

complete graph with n nodes will have n(n-1)/2

edges.



Prepositions

 Tree Graph

A connected graph T without any cycles is

called a tree graph or free graph or simply a

tree. If T is a finite tree with m nodes then T will

have m-1 edges.

 Labelled/Weighted Graph

A graph G is said to be labelled if its edges are

assigned data. G is said to be weighted if each

edge e in G is assigned a nonnegative numerical

value w(e) called the weight or length of e.



Prepositions

 Multiple Edges

Distinct edges e and e’ are called multiple edges

if they connect the same endpoints i.e. e=[u,v]

and e’=[u,v] and the graph having multiple

edges is known as a multigraph.

 Loops

An edge e is called a loop if it has identical

endpoints i.e. e=[u,v]

 Finite Multigraph

A multigraph M is said to be finite if it has a

finite number of nodes and a finite no. of edges.



Graph Examples

A E

B

C D

Graph
deg(A)=3, deg(c)=4
Edges=7
Path length from B to E:

(B,A,E) and (B,C,D,E)
4-cyles:
(A,B,C,E,A), (A,C,D,E,A)

A B C

FED

Tree
Nodes= m=6
Edges=m-1= 5
There is a unique simple 
path between any two 
nodes of the tree graph



Graph Examples

A E

B

C D

Weighted Graph
P1=(B,C,D) and 
P2=(B,A,E,D) are both 
paths from node B to D. 
Although P2 contains 
more edges than P1 the 
weight w(P2)=9 is less 
than the weight w(P1)=10

A D

CB

Multigraph
Multiple edges[BC] i.e. e4 
and e5
Loop e6=[D,D]

3

2 3

6

4

3

2

e1 e6

e4

e5

e3e2



Directed Graph

 A directed graph G also called a dgraph or
graph is the same as a multigraph except
that each edge e in G is assigned a
direction or in other words each edge e is
identified with an ordered pair (u,v) of
nodes in G rather than an unordered pair
[u,v].

 Suppose G is a directed graph with directed

edges e=(u,v). Then e is also called an arc



Directed Graph

 e begins at u and ends at v.

 u is the origin or initial point of e and v is the

destination or terminal point of e.

 u is the predecessor of v and v is successor or

neighbour of u.

 u is adjacent to v and v is adjacent to u.

 Outdegree of u=outdeg(u)= No. of edges

beginning at u.

 Indegree of u=indeg(u)= No. of edges ending at

u



Directed Graph

 Source: If a a node has a positive degree
but zero indegree is known as a source

 Sink: If a node has a zero outdegree but positive

indegree then it is called a sink.



Linked Representation of a 
Graph

 Consider the given graph G. The adjacency
list of each node in G contains its
successor or neighbours.



Linked Representation of a 
Graph

 Note:

The linked representation contains two lists: A node

list NODE and an edge list EDGE

(a) NODE List:

Each element in the list NODE will correspond to a

node in G and it will be a record of the form

NODE NEXT ADJ /////////////
NODE-> Name or key value of the node

NEXT-> Pointer to the next node in the list

ADJ-> Pointer to the first element in adjancency list of the node which is

maintained in the list EDGE.

The shaded area indicates that there may be other information in the record

such as indegree or outdegree.



Linked Representation of a 
Graph

(b) Edge List:

Each element in the list EDGE will correspond to an

edge of G and it will be a record of the form

DEST LINK ///////////////////////////////

DEST->Location in the list NODE of the destination or terminal node of the

edge

LINK-> Link togethers the edges with the same initial node i.e. the nodes in

the same adjancency list.

The shaded area indicates the other information corresponding to edge,

WEIGHT etc.



Schematic Diagram of Linked
Representation of G in Memory



Example



Operations on Graphs

1. Searching in a Graph
(a) Find LOC of node N in a graph G



Operations on Graphs

1. Searching in a Graph
(b) Find LOC of of an edge(A,B) in a graph G



Operations on Graphs

2. Inserting in a Graph
(a) Inserting a node in G



Operations on Graphs

2. Inserting in a Graph
(b) Inserting a edge in G



Example Problem



Example Solution



Traversing a Graph

During the execution of the algorithm, each node N of

G will be in one of the three states called status of N

as follows:

• STATUS=1(Ready State)

It is the initial state of the node N.

• STATUS=2(Waiting State)

The node N is on the queue or stack waiting to be

processed.

• STATUS=3(Processed State)

The node N has been processed.



Traversing a Graph

1. Breadth-First-Search

- First examine the starting node A

- Then examine all the neighbors of A

- Then examine all the neighbors of

neighbors of A and so on.

NOTE: No node is processed more than

once



Traversing a Graph

1. Breadth-First-Search



Traversing a Graph

• Breadth-First-Search Algorithm

(This algorithm use a Queue to hold

nodes)

1. Initialize all nodes to the ready

state(STATUS=1)

2. Put the starting node A in QUEUE and

change its status to the waiting

state(STATUS=2)

3. Repeat steps 4 and 5 until QUEUE is

empty



Traversing a Graph

• Breadth-First-Search Algorithm

4. Remove the front node N of QUEUE.

Process N and change the status of N to

STATUS=3.

5. Add to the rear of QUEUE all the

neighbors of N that are in STATUS=1

and change their status to STATUS=2

[End of Step 3 Loop]

6. Exit



Traversing a Graph

2. Depth-First-Search Algorithm

(This algorithm use a Stack to hold

nodes)

1. Initialize all nodes to the ready

state(STATUS=1)

2. Push the starting node A in STACK

and change its status to the waiting

state(STATUS=2)

3. Repeat steps 4 and 5 until STACK is

empty



Traversing a Graph

• Depth-First-Search Algorithm

4. Pop the top node N of STACK.

Process N and change the status of N to

STATUS=3.

5. Push onto STACK all the neighbors of

N that are in STATUS=1 and change

their status to STATUS=2

[End of Step 3 Loop]

6. Exit



Traversing a Graph

• Depth-First-Search Algorithm
It employs the following rules.
Rule 1 − Visit the adjacent unvisited
vertex. Mark it as visited. Display it. Push
it in a stack.
Rule 2 − If no adjacent vertex is found,
pop up a vertex from the stack. (It will pop
up all the vertices from the stack, which do
not have adjacent vertices.)
Rule 3 − Repeat Rule 1 and Rule 2 until
the stack is empty.



Depth-First Search
Example
Step Traversal Description

1

Initialize the stack.

2
Mark S as visited and put it onto the

stack. Explore any unvisited adjacent

node from S. We have three nodes

and we can pick any of them. For this

example, we shall take the node in

an alphabetical order.



Depth-First Search
Example
Step Traversal Description

3

Mark A as visited and put it onto the

stack. Explore any unvisited adjacent

node from A. Both S and D are

adjacent to A but we are concerned

for unvisited nodes only.

4

Visit D and mark it as visited and put

onto the stack. Here, we

have B and C nodes, which are

adjacent to D and both are unvisited.

However, we shall again choose in

an alphabetical order.



Depth-First Search
Example
Step Traversal Description

5

We choose B, mark it as visited and

put onto the stack. Here B does not

have any unvisited adjacent node.

So, we pop B from the stack.

6

We check the stack top for return to

the previous node and check if it has

any unvisited nodes. Here, we

find D to be on the top of the stack.



Depth-First Search
Example
Step Traversal Description

7

Only unvisited adjacent node is

from D is C now. So we visit C, mark

it as visited and put it onto the stack.

NOTE: As C does not have any unvisited adjacent node so we keep
popping the stack until we find a node that has an unvisited adjacent
node. In this case, there's none and we keep popping until the stack
is empty.



Traversing a Graph

• Depth-First-Search Algorithm



Hashing

• It is a technique used for

performing almost constant time

search in case of insertion,

deletion and find operation.

• Hash tables are used to

implement the concept of

hashing.



Hashing

• Hash tables efficiently implement the

keyed array data structure also

known as associative array or map.

• In each keyed array, each element is

associated with a key. A key is used

to find an element instead of an index

no.. Therefore, Hash table is one

basic form of keyed array.



Hashing

• Since Hash table has to be coded

using an indexed array, there has to

be some way of transforming a key to

an index number. That way is called

the Hashing function.



Hashing Functions

• The hashing function should return a

value based on a key and the size of

the array, the hashing table is built

on.

• Function which helps us in

generating the value corresponding

to key is known as hashing fucntion.



Hashing Functions

• For eg: Suppose we want to organize

a list of about 260 addresses by

people’s last names. In this case,

people’s last names are used as keys

in hash table.

• Create a hashing function but before

that create a relationship between

letters and numbers.

• Assign A→0, B→1, ……, Z→25



Hashing Functions

• Now organize the hash table based on

first letter of the last name.

• As we have 260 elements, we can

multiple the first letter by the last name

by 10.

• So when a key like “Smith” is given,

the key would be transformed to

index(S→18 and 18*10=180) 180.

• This index no. is used to access an

element directly, a hash table access

time is small.



Collision Resolution in
Hashing Functions

• Problem may arise when we have last

names with the same first letter.

• The situation when two keys sent to

the same location in the array is known

as collision. To address this problem,

following are the two main collision

resolving techniques:

(1)Open Hashing/Separate Chaining

(2)Closed Hashing/ Open Addressing



Collision Resolution in
Hashing Functions

(1)Open Hashing/Separate Chaining:

In this startetgy, collision is resolved by

keeping the conflicting elements in a list

i.e. to keep all elements in a list which

generate same hash.

A linked list is stored at each element in

the hash data structure. When a collision

occur, an element can be added into the

lined list i.e. stored at the hash index.



Collision Resolution in
Hashing Functions

(2) Closed Hashing/Open Addressing:

In this strategy, collision is resolved by

placing the conflicting element near to

the slot generated by the hash function.

The disadvantage of closed hashing is

that it consumes more space as

compared to open hashing also it has

less flexibility in accommodating for

duplicate hash element.



Collision Resolution in
Hashing Functions

(2) Closed Hashing/Open Addressing:

The advantage of closed hashing is that

it reduces the overhead of introducing

new data structure and reduces cost of

new memory allocation per new element

insertion.


