
Recursion 

The process in which a function calls itself directly or indirectly is called recursion 
and the corresponding function is called as recursive function. Using recursive 
algorithm, certain problems can be solved quite easily. Examples of such problems 
are Towers of Hanoi (TOH), Inorder/Preorder/Postorder Tree Traversals, DFS of 
Graph, etc. 
 
Base condition in recursion 
 
In the recursive program, the solution to the base case is provided and the solution 
of the bigger problem is expressed in terms of smaller problems. 
int factorial(int n) 

{ 

    if (n < = 1) // base case 

        return 1; 

    else     

        return n*factorial(n-1);     

} 

In the above example, base case for n < = 1 is defined and larger value of number 
can be solved by converting to smaller one till base case is reached. 

 
Solution for a particular problem using recursion 
 
The idea is to represent a problem in terms of one or more smaller problems, and 
add one or more base conditions that stop the recursion. For example, we compute 
factorial n if we know factorial of (n-1). The base case for factorial would be n = 0. 
We return 1 when n = 0. 
 
Stack Overflow error in recursion 
 
If the base case is not reached or not defined, then the stack overflow problem may 
arise. Let us take an example to understand this. 
int factorial(int n) 

{ 

    // wrong base case (it may cause 

    // stack overflow). 

    if (n == 100)  

        return 1; 

 

    else 

http://quiz.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/


        return n*factorial(n-1); 

} 

If fact(10) is called, it will call fact(9), fact(8), fact(7) and so on but the number will 
never reach 100. So, the base case is not reached. If the memory is exhausted by 
these functions on the stack, it will cause a stack overflow error. 

 
Difference between direct and indirect recursion 
 
A function fun is called direct recursive if it calls the same function fun. A function A 
is called indirect recursive if it calls another function say B and B calls A directly or 
indirectly. Difference between direct and indirect recursion has been illustrated in 
Table 1. 
 
// An example of direct recursion 
void A() 
{ 
    // Some code.... 
 
    A(); 
 
    // Some code... 
} 
 
// An example of indirect recursion 
void A() 
{ 
    // Some code... 
 
    B(); 
 
    // Some code... 
} 
void B() 
{ 
    // Some code... 
 
    A(); 
 
    // Some code... 
} 
 
 
Memory allocation to different function calls in recursion 
 
When any function is called from main(), the memory is allocated to it on the stack. A 
recursive function calls itself, the memory for a called function is allocated on top of 
memory allocated to calling function and different copy of local variables is created 
for each function call. When the base case is reached, the function returns its value 



to the function by whom it is called and memory is de-allocated and the process 
continues. 
 

/ A C program to demonstrate working of recursion  
 

#include<stdio.h>  
   
void printFun(int test)  
{  
    if (test < 1)  
        return;  
    else 
    {  
        printf(“%d “, test);  
        printFun(test-1);    // statement 2  

  printf(“%d “, test);  
        return;  
    }  
}  
   
int main()  
{  
    int test = 3;  
    printFun(test); 

    return(0);  
}  
 

Output : 
3 2 1 1 2 3 

When printFun(3) is called from main(), memory is allocated to printFun(3) and a 
local variable test is initialized to 3 and statement 1 to 4 are pushed on the stack as 
shown in below diagram. It first prints ‘3’. In statement 2, printFun(2) is called and 
memory is allocated to printFun(2) and a local variable test is initialized to 2 and 
statement 1 to 4 are pushed in the stack. 
Similarly, printFun(2) calls printFun(1)and printFun(1) calls printFun(0). printFun(
0) goes to if statement and it return to printFun(1). Remaining statements 
of printFun(1) are executed and it returns to printFun(2) and so on. In the output, 
value from 3 to 1 are printed and then 1 to 3 are printed. The memory stack has 
been shown in below diagram. 
 



 

 

 

 

Advantages of recursive programming over iterative programming 
 
Recursion provides a clean and simple way to write code. Some problems are 
inherently recursive like tree traversals, Tower of Hanoi, etc. For such problems, it is 
preferred to write recursive code. We can write such codes also iteratively with the 
help of a stack data structure. For example refer Inorder Tree Traversal without 
Recursion, Iterative Tower of Hanoi. 
 

Disadvantages of recursive programming over iterative programming 
 
Note that both recursive and iterative programs have the same problem-solving 
powers, i.e., every recursive program can be written iteratively and vice versa is also 
true. The recursive program has greater space requirements than iterative program 
as all functions will remain in the stack until the base case is reached. It also has 
greater time requirements because of function calls and returns overhead. 
 

 

 

 

 

 

Courtesy : https://www.geeksforgeeks.org/recursion/ 

https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/
https://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/
https://www.geeksforgeeks.org/iterative-tower-of-hanoi/
https://www.geeksforgeeks.org/recursion/

